Technologies for imaging the retina in animal models and patients have been significantly improved through advances in instrumentation, enabling high-resolution imaging of tissue structure. Furthermore, decades of basic and clinical research have identified a number of molecular biomarkers which may be valuable for assessing susceptibility to retinal disease, early disease, and disease progression, as well as dissecting molecular mechanisms in preclinical studies. The goal of this proposal is to build upon advances in imaging instrumentation and biomarker research in order to develop technologies for in vivo molecular imaging of the retina. The strategy is based on hairpin functionalized gold nanoparticles (hAuNP), biocompatible gold colloids engineered to enter living tissues and fluoresce upon hybridization with targeted messenger RNA (mRNA) or microRNA sequences. Recently published and preliminary studies demonstrate that hAuNP are capable of specifically targeting multiple distinct RNA sequences in mammalian cells and the retinal vasculature, without adverse effects on cell function. In this proposal, hAuNP will be utilized to validate mRNAs and microRNAs as biomarkers of choroidal neovascularization (CNV), using a mouse model of laser- induced choroidal neovascularization (LCNV).
In Aim 1, hAuNP will be used to image CNV-relevant biomarkers in primary choroidal endothelial cells and retinal pigment epithelial cells, and the biodistribution and safety profiles of hAuNP will be further tested in mouse models.
In Aims 2 and 3 of the proposal, hAuNP will be evaluated in a mouse model of LCNV in order to establish the utility of longitudinal, multiplexed RNA imaging. These studies will set the framework for molecular imaging of RNA and other molecular biomarkers in animal models, and will facilitate clinical translation of these technologies for early detection and staging of disease in patients.

Public Health Relevance

Early detection of neovascularization in AMD is critical for preserving vision, since choroidal neovascularization (CNV) is a key blinding complication in AMD patients. In this proposal, molecular biomarkers of subclinical and/or early CNV will be detected using fluorescent nanoparticles. This work is clinically translational and will eventually enable the clinician to begin treatment earlier, when it can be more effective.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
6R01EY023397-05
Application #
9267294
Study Section
Diseases and Pathophysiology of the Visual System Study Section (DPVS)
Program Officer
Greenwell, Thomas
Project Start
2013-03-01
Project End
2018-02-28
Budget Start
2016-04-30
Budget End
2017-02-28
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
079917897
City
Nashville
State
TN
Country
United States
Zip Code
37232
Uddin, Md Imam; Jayagopal, Ashwath; Wong, Alexis et al. (2018) Real-time imaging of VCAM-1 mRNA in TNF-? activated retinal microvascular endothelial cells using antisense hairpin-DNA functionalized gold nanoparticles. Nanomedicine 14:63-71
Jackson, S R; Wong, A C; Travis, A R et al. (2016) Applications of Hairpin DNA-Functionalized Gold Nanoparticles for Imaging mRNA in Living Cells. Methods Enzymol 572:87-103
Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R et al. (2016) In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy. Sci Rep 6:31011
Uddin, Md Jashim; Moore, Chauca E; Crews, Brenda C et al. (2016) Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization. J Biomed Opt 21:90503
Jia, Yali; Liu, Gangjun; Gordon, Andrew Y et al. (2015) Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography. Opt Express 23:4212-25
Gahlaut, Nivriti; Suarez, Sandra; Uddin, Md Imam et al. (2015) Nanoengineering of therapeutics for retinal vascular disease. Eur J Pharm Biopharm 95:323-30
Evans, Stephanie M; Kim, Kwangho; Moore, Chauca E et al. (2014) Molecular probes for imaging of hypoxia in the retina. Bioconjug Chem 25:2030-7
May, James M; Jayagopal, Ashwath; Qu, Zhi-Chao et al. (2014) Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes. Biochem Biophys Res Commun 452:112-7
Gordon, Andrew Y; Jayagopal, Ashwath (2014) Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography. J Nanomed Nanotechnol Suppl 5:004
Zhou, Qinbo; Anderson, Chastain; Zhang, Hongmei et al. (2014) Repression of choroidal neovascularization through actin cytoskeleton pathways by microRNA-24. Mol Ther 22:378-389