Clinical studies supporting the role of lipids in the vascular damage associated with DR, including the DCCT/EDIC, ACCORD, Blue Mountain Eye Study and WESDR studies, suggest that retinal lipid levels may be more critical than circulating lipid levels. DR is not only the result of endothelial damage but also inadequate vascular repair. Dyslipidemia adversely impacts vascular repair by deleteriously affecting circulating angiogenic cells (CACs), a reparative bone marrow-derived (BMD) cell population. Dyslipidemia also promotes a proinflammatory environment in the retina and activates BMD inflammatory cells in particular monocytes. Thus, systemic and retinal lipid abnormalities simultaneously reduce vascular repair and also promote vascular damage by increasing inflammation. In this application, we provide insight into DR pathogenesis by examining a novel axis that unifies key lipid regulators, SIRT1 and liver X receptor (LXRa/LXR). SIRT1, a member of the sirtuin family of NAD-dependent protein deacetylases, is decreased in DR. The beneficial effects of SIRT1 on metabolism and inflammation were shown to be mediated through LXR activation. Previously, we showed that pharmacological activation of liver X receptor (LXRa/LXR) prevents DR in rodent models. In this proposal, we test the hypothesis that diabetes-induced disruption of the SIRT1-LXR axis results in abnormal lipid metabolism and inflammation. Strategies to stimulate this axis will result in activation of cellular and tissue cholesterol removal with normalization o cholesterol homeostasis and repression of the inflammatory genes, iNOS, IL-1, ICAM-1, and CCL2, in target tissues (retina) and cells (CACs and monocytes/macrophages). We put forth the following specific aims:
Aim 1 : To determine if activation of the SIRT1-LXR axis reverses diabetes-induced retinal damage through normalization of cholesterol homeostasis and reduction in iNOS, IL-1, ICAM- 1, and CCL2 inflammatory gene expression in the retina.
Aim 2 : To examine whether activation of the SIRT1-LXR axis reverses the diabetes-induced dysfunction of CACs and improves their reparative function by correcting CAC membrane fluidity towards normal to enhance migration out of the bone marrow (BM) and into areas of retinal injury and promote vascular repair.
Aim 3 : To determine whether activation of the SIRT1-LXR axis regulates the innate immune response resulting in a correction of diabetes-induced monocytosis and modulation of local and systemic macrophage/monocyte polarization.

Public Health Relevance

Results from large clinical trials demonstrate a strong association between lipid abnormalities and progression of diabetic retinopathy (DR), the most common microvascular complication. We found that activation of a master regulator of cholesterol metabolism, the nuclear hormone receptors liver X receptors (LXRa/LXR), prevents DR in rodent models. In this application, we seek to understand the mechanisms responsible for the beneficial effects of LXR agonists on retina and how LXR activation in a diabetic mouse model protects circulating angiogenic cells (a key reparative cells) while reducing deleterious inflammatory cells.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY025383-02
Application #
9127977
Study Section
Diseases and Pathophysiology of the Visual System Study Section (DPVS)
Program Officer
Shen, Grace L
Project Start
2015-09-01
Project End
2019-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
2
Fiscal Year
2016
Total Cost
$532,879
Indirect Cost
$90,672
Name
Indiana University-Purdue University at Indianapolis
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Baumler, Stephen M; McHale, Andrew M; Blanchard, G J (2018) Surface Charge and Overlayer pH Influence the Dynamics of Supported Phospholipid Films. J Electroanal Chem (Lausanne) 812:159-165
Shaw, Lynn Calvin; Li Calzi, Sergio; Li, Nan et al. (2018) Enteral Arg-Gln Dipeptide Administration Increases Retinal Docosahexaenoic Acid and Neuroprotectin D1 in a Murine Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 59:858-869
Malek, Goldis; Busik, Julia; Grant, Maria B et al. (2018) Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 13:359-377
Beli, Eleni; Yan, Yuanqing; Moldovan, Leni et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes 67:1867-1879
Kady, Nermin M; Liu, Xuwen; Lydic, Todd A et al. (2018) ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability. Diabetes 67:769-781
Huang, Chao; Fisher, Kiera P; Hammer, Sandra S et al. (2018) Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy by Activating the Classical Complement Pathway. Diabetes 67:1639-1649
Yan, Yuanqing; Gao, Ruli; Trinh, Thao L P et al. (2017) Immunodeficiency in Pancreatic Adenocarcinoma with Diabetes Revealed by Comparative Genomics. Clin Cancer Res 23:6363-6373
Baumler, Stephen M; Blanchard, Gary J (2017) The Influence of Metal Ions on the Dynamics of Supported Phospholipid Langmuir Films. Langmuir 33:2986-2992
Kady, Nermin; Yan, Yuanqing; Salazar, Tatiana et al. (2017) Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes. J Clin Lipidol 11:694-703
Basavarajappa, Halesha D; Sulaiman, Rania S; Qi, Xiaoping et al. (2017) Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol Med 9:786-801

Showing the most recent 10 out of 25 publications