The cornea is the most densely innervated tissue in humans. Peripheral corneal nerves regenerate follow injury. Our hypothesis is that VEGF is a critical determinant of corneal nerve regeneration after injury and that the signaling pathways which mediate neurogenesis are distinct from those which mediate angiogenesis.
Aim 1 will characterize the mechanisms by which VEGF ligands mediate corneal nerve repair in vitro and in vivo.
Aim 2 characterizes the ability of VEGF ligands to mediate repair in animal models of corneal injury.
Proper regeneration of corneal nerves after injury is needed to prevent the development of potentially blinding neurotrophic keratitis. This proposal will investigate a new role in corneal nerve regeneration for the well characterized VEGF signaling pathway in order to develop new techniques for promoting corneal repair.
Zhong, Wei; Montana, Mario; Santosa, Samuel M et al. (2018) Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Surv Ophthalmol 63:453-479 |
Yamakawa, Michael; Doh, Susan J; Santosa, Samuel M et al. (2018) Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 38:1769-1798 |
Zhang, Min; Zhou, Qiang; Luo, Yuncin et al. (2018) Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development. PLoS One 13:e0191962 |
Zhong, Wei; Gao, Xinbo; Wang, Shuangyong et al. (2017) Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 20:581-598 |