Glaucoma is the second leading cause of blindness worldwide. The prevalence of this age-related disease is expected to increase substantially in coming years because of the aging population. Currently, the only clinically approved glaucoma intervention targets at lowering intraocular pressure (IOP). However, the exact roles of IOP elevation in glaucomatous pathogenesis remain unclear. In addition, glaucoma may continue to progress in some patients even after lowering IOP to normal levels, which indicates that additional key factors may be contributing to the disease. The goal of this project is to better understand glaucoma mechanisms by determining non-invasively and quantitatively the pathophysiological events and disease progression in the visual system using novel, multi-parametric magnetic resonance imaging (MRI) techniques in both human glaucoma patients and experimental glaucoma models. We will test the central hypothesis that glaucoma involves impairments of the brain's visual system apart from the eye. Furthermore, such impairments may be ameliorated by early neuroprotective treatments. We will investigate the structural, metabolic and functional brain changes longitudinally using the 3-Tesla human MRI scanner and the 9.4-Tesla animal MRI scanner, and relate brain MRI findings with glaucoma disease severity using retinal thickness measurements and visual outcome assessments. The project?s primary objective is to use the developed in vivo imaging model system to find out the structural-metabolic-functional brain relationships and eye-brain-behavior relationships in both humans and animal models of glaucoma for clinical and translational applications. This information will be valuable for identifying glaucoma mechanisms in the brain, monitoring glaucoma progression in the visual system, and guiding interventions to the visual system, in order to reduce the burden of this irreversible but preventable disease.
The Specific Aims to be tested are as follows:
Aim 1 : To test the hypothesis that experimental glaucoma impairs the visual system and visuomotor behavior in rodents. We will elevate IOP to different levels and durations to determine their contributions to the structure, metabolism and function of the visual system. We will also determine whether oral choline supplements can ameliorate the neurobehavioral effects of experimental glaucoma on the visual system. Lastly, we will determine the specificity of glaucomatous damages to the visual system by comparing the neurobehavioral effects between experimental glaucoma and other retinal or optic nerve injuries over time.
Aim 2 : To test the hypothesis that vision loss in human glaucoma involves impairments of the visual system. Diffusion tensor MRI, proton MR spectroscopy and functional MRI at 3 Tesla will be used to determine the structural, metabolic and functional brain changes in glaucoma patients with different degrees of vision loss. The in vivo brain MRI measures will be compared with clinical assessments by optical coherence tomography of the retina and Humphrey visual field functional tests. The visual system in glaucoma will also be compared with healthy control brains and other retinal or optic nerve injuries.

Public Health Relevance

) The proposed study will test the involvements of the brain?s visual system in glaucoma. We will develop a non-invasive imaging model system to determine the structural-metabolic-functional brain relationships and eye-brain-behavior relationships in both humans and experimental animal models for identifying glaucoma mechanisms and monitoring glaucoma progression in the visual system with and without neuroprotective treatments, in order to guide more effective strategies for visual preservation and restoration and to reduce the burden of this irreversible but preventable disease.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY028125-01
Application #
9363841
Study Section
Diseases and Pathophysiology of the Visual System Study Section (DPVS)
Program Officer
Liberman, Ellen S
Project Start
2017-09-30
Project End
2022-06-30
Budget Start
2017-09-30
Budget End
2018-06-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
New York University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10010
Yang, Xiao-Ling; van der Merwe, Yolandi; Sims, Jeffrey et al. (2018) Age-related Changes in Eye, Brain and Visuomotor Behavior in the DBA/2J Mouse Model of Chronic Glaucoma. Sci Rep 8:4643