The aims of the present proposal are to extend our work with the Intraocular Robotic Interventional and Surgical System (IRISS) and augment it for teleoperated vitreoretinal surgery. Although novel technologies such as intraoperative optical coherence tomography (i-OCT) have been developed, vitreoretinal surgeons still lack critical information during surgery (e.g., the distance between pre-retinal membrane and retina) due to inadequate display and feedback. In addition, physiological capabilities are a limiting factor because the retina is one of the smallest and most delicate tissues of the human body. The rate of surgical failure in complex retinal cases remains high (10?15%) due to the limits of current surgical capabilities, thereby condemning these patients to blindness [1-3]. Our group has developed the IRISS [4-10] through a combination of internal funding and a recent R21 grant (NIH/R21EY024065). This support enabled our group to develop the IRISS platform to perform fully automated cataract surgery on ex-vivo pig eyes. We have also demonstrated the ability of the IRISS to perform safe- motion guidance for lens removal based on per-operative, real-time anatomical detection, and teleoperated capabilities for vitreoretinal maneuvers, including retinal vein cannulation and core vitrectomy [4]. Furthermore, Raven II, an open-source surgical robotics system [11-22], was co-developed by Rosen over the past 16 years for general minimally invasive surgery. In the present study, the surgical cockpit of the Raven II system will serve as the foundation of the user interface for the improved robotic surgical system. The accumulated experience of our group through this previous work will guide the proposed research effort from the stringent clinical requirements to the design, development, and evaluation of the proposed system. The present study is composed of three independent, parallel tracks. First, the mechanical design and assembly of the robotic surgical system will be improved to achieve tool-tip positional precision of 5 m, approximately ten times more precise than a human surgeon [23]. Second, we will enhance the surgeon's abilities in sensing and interpreting anatomical details during retinal manipulation by applying high-resolution (10 m), real-time intraoperative i-OCT scans to detect anatomical features critical to specific vitreoretinal procedures. Third, surgical features of interest will be presented to the surgeon via a human?robot surgical cockpit that provides innovative 3D, augmented-reality visualization and auditory and haptic feedback.
Each aim will be assessed by a series of evaluation protocols to ensure their success. The safety and efficacy of the system will also be compared with and without the proposed improvements (robotic control, enhanced sensing, and augmented feedback) on a virtual reality simulator in addition to phantom and biological eye models chosen to best assess surgical outcome. It is important to note that while the ultimate goal is the integration of all three aims, their development remains independent and success or failure in one does not affect the outcome of another. We hypothesize that a surgeon?robot surgical system that incorporates enhanced sensing and feedback to enrich the surgeon's perception and interpretation of anatomical details will improve surgical safety and reduce the rate of surgical complications to improve health outcomes and abate the costs associated with surgical complications.

Public Health Relevance

This project aims to improve the safety and precision of vitreoretinal surgery by developing a robotic surgical system controlled by a human surgeon immersed in a surgical cockpit. Our initial prototype Intraocular Robotic Interventional and Surgical System (IRISS) will be improved by incorporating per-operative OCT guidance, augmented reality, force feedback, virtual fixtures, and high-precision robotic motion actuation dedicated to performing vitreoretinal surgical procedures. We hypothesize that the proposed robotic surgical system?where the surgeon is assisted by precise motion actuation, enriched with per-operative sensing and perception, and guided by augmented reality and haptic feedback?will improve surgical safety and efficacy by reducing surgical uncertainties to decrease sight-threatening surgical complication rates, improve health outcomes, and abate costs related to surgical complications.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY029689-02
Application #
9852452
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Shen, Grace L
Project Start
2019-02-01
Project End
2024-01-31
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095