This proposal involves the development and evaluation of new measurement and data-processing methods for clinical chemistry and biomedical studies. Approaches emphasized in the proposal are multipoint data-processing methods for kinetic analysis, adaptation and development of multiwavelength data-processing methods for multicomponent spectrochemical analysis in the presence of unknown interferences, adaptation of imaging detectors for multiwavelength fluorescence analysis, and simultaneous multielement analysis based on continuous-source atomic absorption spectroscopy. Goals of the kinetic studies are to develop data-processing methods that are applicable to noninteger reaction orders and will provide the same advantages of extended linear ranges, improved sensitivity, and markedly reduced errors that have characterized applications to first-order and Michaelis-Menten kinetics. Goals of the absorption and fluorescence spectroscopic studies are to provide quantitative approaches that will yield high quality results for multiple components in the """"""""dirty"""""""" matrices that are characteristic of biological samples. Goals of the atomic-absorption project are to provide the same type of multielement capability for atomic absorption that is common for atomic emission while retaining most of the simplicity that has contributed to the popularity of atomic absorption methods. Model reactions and chemical problems to be used in the development and evaluation of these approaches will be selected not only for their suitability for these studies but also for their significance to clinical chemistry and other biomedical areas.
Showing the most recent 10 out of 25 publications