Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM024032-19
Application #
2174193
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Project Start
1979-01-01
Project End
1997-03-31
Budget Start
1995-04-01
Budget End
1997-03-31
Support Year
19
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Stanford University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Tanaka, T; Ames, J B; Kainosho, M et al. (1998) Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. J Biomol NMR 11:135-52
Baldwin, A N; Ames, J B (1998) Core mutations that promote the calcium-induced allosteric transition of bovine recoverin. Biochemistry 37:17408-19
Ames, J B; Tanaka, T; Stryer, L et al. (1996) Portrait of a myristoyl switch protein. Curr Opin Struct Biol 6:432-8
Boniface, J J; Lyons, D S; Wettstein, D A et al. (1996) Evidence for a conformational change in a class II major histocompatibility complex molecule occurring in the same pH range where antigen binding is enhanced. J Exp Med 183:119-26
Ladant, D (1995) Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J Biol Chem 270:3179-85
Shopes, B (1995) Temperature-dependent binding of IgG1 to a human high affinity Fc receptor. Mol Immunol 32:375-8
Zozulya, S; Ladant, D; Stryer, L (1995) Expression and characterization of calcium-myristoyl switch proteins. Methods Enzymol 250:383-93
Ames, J B; Porumb, T; Tanaka, T et al. (1995) Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J Biol Chem 270:4526-33
Ames, J B; Tanaka, T; Ikura, M et al. (1995) Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin. J Biol Chem 270:30909-13
Hanson, P I; Meyer, T; Stryer, L et al. (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12:943-56

Showing the most recent 10 out of 35 publications