The proposed research is concerned with the fidelity of translational elongation and termination in the model eucaryote Saccharomyces cerevisiae. The role of soluble translation factors and other proteins in the fidelity of genetic code translation will serve as a central theme in this work. Mutants affecting elongation and termination will be used to identify and establish the roles of genes and proteins important in the fidelity process. The major focus of the proposal will be on those aspects of mistanslation unique to eucaryotes in which fidelity is viewed as a central parameter determining cellular growth rate. In order to provide continuity, some features of the translational fidelity apparatus shared in common by procaryotes and eucaryotes will also be assessed. First, we propose to study three translational suppressor genes, suf12, suf13, and suf14, that are known or suspected to encode novel fidelity proteins that appear to have no functional procaryotic counterpart. The study of these genes and their products will aid in assessing the view that complex, compartmentalized eucaryotic cells may require a more sophistocated level of control over fidelity than that required in procaryotes. The second part of the proposal addresses the process of translational termination for which very little information is available in eucaryotes. Termination factors and ribosome components important in the termination process will be characterized. Information from these studies will be used to assess and apparent relationship between mistranslation and termination. Finally, the tRNA selection and proof-reading system will be studied in yeast in relation to two types of misreading, amino acid misincorporation and frameshifting. This work will focus on the function of the known soluble factors EF-1 alpha (responsible for tRNA binding to the ribosome) and EF-2 (responsible for translocation). Direct information on tRNA selection and proof-reading in yeast will obviate the need for indirect inference to procaryotic systems and will help assess aspects of mistranslation unique to eucaryotes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM026217-13
Application #
3273710
Study Section
Genetics Study Section (GEN)
Project Start
1979-04-01
Project End
1992-12-31
Budget Start
1992-01-01
Budget End
1992-12-31
Support Year
13
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
Other Domestic Higher Education
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Dahlseid, J N; Puziss, J; Shirley, R L et al. (1998) Accumulation of mRNA coding for the ctf13p kinetochore subunit of Saccharomyces cerevisiae depends on the same factors that promote rapid decay of nonsense mRNAs. Genetics 150:1019-35
Atkin, A L; Schenkman, L R; Eastham, M et al. (1997) Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J Biol Chem 272:22163-72
Lee, B S; Culbertson, M R (1995) Identification of an additional gene required for eukaryotic nonsense mRNA turnover. Proc Natl Acad Sci U S A 92:10354-8
Atkin, A L; Altamura, N; Leeds, P et al. (1995) The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol Biol Cell 6:611-25
Zhai, L; Graves, P R; Robinson, L C et al. (1995) Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J Biol Chem 270:12717-24
Robinson, L C; Menold, M M; Garrett, S et al. (1993) Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis. Mol Cell Biol 13:2870-81
Robinson, L C; Hubbard, E J; Graves, P R et al. (1992) Yeast casein kinase I homologues: an essential gene pair. Proc Natl Acad Sci U S A 89:28-32
Leeds, P; Wood, J M; Lee, B S et al. (1992) Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 12:2165-77
Edelman, I; Culbertson, M R (1991) Exceptional codon recognition by the glutamine tRNAs in Saccharomyces cerevisiae. EMBO J 10:1481-91
Leeds, P; Peltz, S W; Jacobson, A et al. (1991) The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 5:2303-14

Showing the most recent 10 out of 21 publications