Assembly and degradation of extracellular matrices are dynamic processes that occur during wound healing, embryogenesis, and metastasis. Fibronectin circulates at a high concentration as a soluble dimeric molecule in plasma and various other body fluids, and exists in an insoluble, multimeric form in the fibrillar network in the extracellular matrix of connective tissue, granulation tissue, basement membranes, and many embryonic structures. This multimeric form of fibronectin is thought to be the primary functional form of the molecule, mediating various adhesive and migratory events associated with wound repair, cell migration, embryogenesis, and neovascularization. Therefore, understanding the fundamental process of how fibronectin is assembled into the extracellular matrix is essential to our knowledge of how cells interact with the matrix during these adhesive and migratory events. Transformed cells exhibit a variety of alterations in their interactions with the extracellular matrix, including reduced adherence, and reduced assembly of fibronectin- containing extracellular matrices. Altered deposition of fibronectin has also been associated with atherosclerosis and fibrosis. Thus, understanding how cells assemble fibronectin into the extracellular matrix will also yield insights into the importance of altered fibronectin matrix assembly to various pathological processes. The broad aim of this proposal is to elucidate the mechanisms involved in the polymerization and subsequent assembly of soluble fibronectin into the extracellular matrix. Deposition of fibronectin in the extracellular matrix is a cell-mediated process that is initiated by the binding of soluble fibronectin to specific sites on the cell surface. This initial binding of fibronectin to cell surfaces is mediated by the amino-terminal 70kDa region of fibronectin. Following the binding of soluble fibronectin to the cell surface, fibronectin-fibronectin interactions are involved in accumulation of fibronectin into disulfide-stabilized aggregates in the extracellular matrix. The goals of this project are to define the structural features of fibronectin that are important for fibronectin matrix assembly, and to determine how specific regions of fibronectin participate in the cell-mediated polymerization of fibronectin into the extracellular matrix. These studies will use variant recombinant fibronectin molecules to investigate which regions of fibronectin are required for matrix assembly, and what role these regions play in this process. Previous data indicate that the sequences necessary for de novo establishment of nucleation sites for matrix assembly are distinct from sequences important for polymerization of fibronectin into preformed matrices. The hypothesis to be tested in this grant is that the first type III module of fibronectin and the integrin- binding site in the 10th type III module of fibronectin are required for the de novo establishment of matrix assembly sites, and that once these sites are established, exogenous fibronectin lacking these sequences can assemble into matrix.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
First Independent Research Support & Transition (FIRST) Awards (R29)
Project #
7R29HL050549-06
Application #
6200707
Study Section
Pathobiochemistry Study Section (PBC)
Project Start
1995-08-01
Project End
2001-07-31
Budget Start
1999-10-01
Budget End
2001-07-31
Support Year
6
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Rochester
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
Pereira, Marian; Rybarczyk, Brain J; Odrljin, Tatjana M et al. (2002) The incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin matrix. J Cell Sci 115:609-17
Sottile, Jane; Hocking, Denise C (2002) Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546-59
Ensenberger, M G; Tomasini-Johansson, B R; Sottile, J et al. (2001) Specific interactions between F1 adhesin of Streptococcus pyogenes and N-terminal modules of fibronectin. J Biol Chem 276:35606-13
Hocking, D C; Sottile, J; Langenbach, K J (2000) Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J Biol Chem 275:10673-82
Sottile, J; Hocking, D C; Langenbach, K J (2000) Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J Cell Sci 113 Pt 23:4287-99
Langenbach, K J; Sottile, J (1999) Identification of protein-disulfide isomerase activity in fibronectin. J Biol Chem 274:7032-8
Hocking, D C; Sottile, J; Reho, T et al. (1999) Inhibition of fibronectin matrix assembly by the heparin-binding domain of vitronectin. J Biol Chem 274:27257-64
Hocking, D C; Sottile, J; McKeown-Longo, P J (1998) Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin's cell adhesion and matrix assembly domains. J Cell Biol 141:241-53
Sottile, J; Hocking, D C; Swiatek, P J (1998) Fibronectin matrix assembly enhances adhesion-dependent cell growth. J Cell Sci 111 ( Pt 19):2933-43
Sottile, J; Mosher, D F (1997) N-terminal type I modules required for fibronectin binding to fibroblasts and to fibronectin's III1 module. Biochem J 323 ( Pt 1):51-60