The objective is to understand the function of bacteriorhodopsin (bR) at the level of chemistry and atomic structure. bR is an archetype of a transmembrane protein where many amino acids are directly involved in the chemical process of transmembrane transport.
One aim i s to achieve a preparative purification of bacterioospin protein produced from a PBR322 beta- galactosidase-bacterioospin fusion vector in E. coli. The chromophore retinal is to be incorporated to generate bacteriorhodopsin with the same properties as those of wild type bR. Many individual residues of bR will be altered by site- directed mutagenesis, and effects on function assessed by three quantitative assays of stoichiometry and efficiency by which the protein pumps protons in response to light. The structure of each mutated protein will be assessed quantitatively using electron diffraction up to 2.65 A resolution, that will allow clear definition of whether a mutational effect is chemical or is merely one that perturbs the folding or structure. Only through this synthesis can chemical role in the function be assigned.
A second aim i s to achieve a three-dimensional structure at high resolution for bR. Since electron diffraction methods proved increasingly complex at resolutions beyond 3.5 Angstroms in the membrane plane, and at lower resolutions for titled images 3-D crystals of bR are the basis for x-ray diffraction. bR from Halobacterium halobium will be solubilized in Triton X-100, purified in a sterol detergent by size exclusion, heterogeneity removed by isoelectric focusing in nonyl glucoside, and crystallized in a fourth detergent. Linking together of individually successful steps is aimed at exceeding the current crystal size-limited x-ray resolution of 5.5 Angstroms resolution. Electron microscopy will assist in solving the crystal structure. Binding site residues for heavy metal-containing labels already localized in the structure are to be located in the sequence using site-directed mutagenesis and electron diffraction. This will further define the folding path of sequence within the structure in membranes. Results will yield insights in fundamental processes of energy transduction and transmembrane signalling in biology. Similarities to mammalian rhodopsin and to transmembrane channeling receptors will illuminate processes in vision, neurochemistry and cell-cell regulation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM032079-09
Application #
3280649
Study Section
Biophysical Chemistry Study Section (BBCB)
Project Start
1983-06-01
Project End
1993-05-31
Budget Start
1991-06-01
Budget End
1992-05-31
Support Year
9
Fiscal Year
1991
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
Schools of Medicine
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Turner, G J; Miercke, L J; Mitra, A K et al. (1999) Expression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein. Protein Expr Purif 17:324-38
Turner, G J; Miercke, L J; Thorgeirsson, T E et al. (1993) Bacteriorhodopsin D85N: three spectroscopic species in equilibrium. Biochemistry 32:1332-7
Mitra, A K; Miercke, L J; Turner, G J et al. (1993) Two-dimensional crystallization of Escherichia coli-expressed bacteriorhodopsin and its D96N variant: high resolution structural studies in projection. Biophys J 65:1295-306
Lin, S W; Fodor, S P; Miercke, L J et al. (1991) Resonance Raman spectra of bacteriorhodopsin mutants with substitutions at Asp-85, Asp-96, and Arg-82. Photochem Photobiol 53:341-6
Miercke, L J; Betlach, M C; Mitra, A K et al. (1991) Wild-type and mutant bacteriorhodopsins D85N, D96N, and R82Q: purification to homogeneity, pH dependence of pumping, and electron diffraction. Biochemistry 30:3088-98
Thorgeirsson, T E; Milder, S J; Miercke, L J et al. (1991) Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Biochemistry 30:9133-42
Milder, S J; Thorgeirsson, T E; Miercke, L J et al. (1991) Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin. Biochemistry 30:1751-61
Shand, R F; Miercke, L J; Mitra, A K et al. (1991) Wild-type and mutant bacterioopsins D85N, D96N, and R82Q: high-level expression in Escherichia coli. Biochemistry 30:3082-8
Mitra, A K; Stroud, R M (1990) High sensitivity electron diffraction analysis. A study of divalent cation binding to purple membrane. Biophys J 57:301-11
Miercke, L J; Ross, P E; Stroud, R M et al. (1989) Purification of bacteriorhodopsin and characterization of mature and partially processed forms. J Biol Chem 264:7531-5

Showing the most recent 10 out of 13 publications