The objectives of the project are to gain a better understanding of the free radical based mechanisms for enzymic catalysis and the role of the adenosyl radical in initiation of the these reactions. Free-radical reactions are of fundamental importance in biology. Although radicals that are generated adventitiously in living system are detrimentral, nature uses free radicals in order to carry out difficult steps in biosynthesis and metabolism. The adenosylcobalamin (AdoCbl)-dependent enzymes represent one famiily of enzymes that carry out free radical mediated reactions. Ethanolamine ammonia-lyase is an AdoCbl-dependent enzyme from bacteria. The enzyme catalyzes the conversion of ethanolamine to acetaldehyde and ammonia, and bacteria which contain the genes for this enzyme are able to grow on ethanolamine, obtained from the breakdown of phospholipids, as their sole source of carbon, nitrogen and energy. The enzyme is a member of a group of AdoCbl-dependent enzymes which catalyze the interchange of positions of a hydrogen atom and a substituent on adjacent carbon atoms. These enzymes use AdoCbl to initiate the radical-mediated rearrangement through homolysis of the cobalt-carbon bond of AdoCbl to give cob(ll)alamin and the reactive 5'-deoxyadenosyl radical. Some of the free radical intermediates in the reaction of substrates reach concentrations such that they can be observed by electron paramagnetic resonance (EPR) spectroscopic methods. These intermediates will be identified through their characteristic nuclear hyperfine splitting patterns in EPR spectra. Substrate analogs which lead to suicide inactivation of the enzyme by free-radicals that stray from the normal reaction pathway will be identified by spectroscopic methods and by identifiction of the reaction products. Factors leading to a greater than trillion fold acceleration in the rate of cobalt--carbon bond cleavage in enzyme-bound AdoCbl will be probed by measurement of the epimerization of a chiral 5'-deutero form of AdoCbl using nuclear magnetic resonance methods. The mechanism for the rearrangement steps in the catalytic cycle will be probed by measurement of nitrogen kinetic isotope effects for substrates using isotope ratio mass spectrometry. Genes for the enzyme from different species of bacteria will be cloned and over expressed in E. coli, and the proteins subjected to screens for crystallization.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM035752-21
Application #
6990600
Study Section
Physical Biochemistry Study Section (PB)
Program Officer
Ikeda, Richard A
Project Start
1986-01-01
Project End
2007-04-30
Budget Start
2006-01-01
Budget End
2007-04-30
Support Year
21
Fiscal Year
2006
Total Cost
$315,190
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Tang, Kuo-Hsiang; Mansoorabadi, Steven O; Reed, George H et al. (2009) Radical triplets and suicide inhibition in reactions of 4-thia-D- and 4-thia-L-lysine with lysine 5,6-aminomutase. Biochemistry 48:8151-60
Carmieli, Raanan; Larsen, Todd M; Reed, George H et al. (2007) The catalytic Mn2+ sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations. J Am Chem Soc 129:4240-52
Sims, Paul A; Menefee, Ann L; Larsen, Todd M et al. (2006) Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit. J Mol Biol 355:422-31
Poyner, Russell R; Anderson, Mark A; Bandarian, Vahe et al. (2006) Probing nitrogen-sensitive steps in the free-radical-mediated deamination of amino alcohols by ethanolamine ammonia-lyase. J Am Chem Soc 128:7120-1
Mansoorabadi, Steven O; Seravalli, Javier; Furdui, Cristina et al. (2006) EPR spectroscopic and computational characterization of the hydroxyethylidene-thiamine pyrophosphate radical intermediate of pyruvate:ferredoxin oxidoreductase. Biochemistry 45:7122-31
Mansoorabadi, Steven O; Padmakumar, Rugmini; Fazliddinova, Nisso et al. (2005) Characterization of a succinyl-CoA radical-cob(II)alamin spin triplet intermediate in the reaction catalyzed by adenosylcobalamin-dependent methylmalonyl-CoA mutase. Biochemistry 44:3153-8
Reed, George H; Mansoorabadi, Steven O (2003) The positions of radical intermediates in the active sites of adenosylcobalamin-dependent enzymes. Curr Opin Struct Biol 13:716-21
Sims, Paul A; Larsen, Todd M; Poyner, Russell R et al. (2003) Reverse protonation is the key to general acid-base catalysis in enolase. Biochemistry 42:8298-306
Poyner, Russell R; Larsen, Todd M; Wong, Se-Wei et al. (2002) Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Arch Biochem Biophys 401:155-63
Frey, Perry A; Chang, Christopher H; Ballinger, Marcus D et al. (2002) Kinetic characterization of transient free radical intermediates in reaction of lysine 2,3-aminomutase by EPR lineshape analysis. Methods Enzymol 354:426-35

Showing the most recent 10 out of 40 publications