The adult human liver flavin-containing monooxygenases (HLFMO) remains as one of the key classes of important human monooxygenases that have not been studied in a systematic and comprehensive manner. It is now recognized that one form of the enzyme, HLFMO3, is the primary enzyme present in adult human liver and is receiving increased attention. Due to the recognition that mutant HLFMO3 may be responsible for trimethylaminuria (i.e., 'fish-odor syndrome') and other human diseases, it is imperative that this enzyme be studied. The long term goal of our research is to understand the physiological role of HLFMO3 and to determine the involvement of this enzyme in human disease states. Little is known about the substrate specificity of HLFMO3 and essentially nothing is known regarding the way HLFMO3 transforms endogenous amines to non-toxic readily excreted N-oxidized materials. HLFMO3 is a major component of the defense that protects humans against potentially toxic chemicals in their environment. Thus, humans with a decreased amount of HLFMO3 may be predisposed to the toxic or pathogenic action of xenobiotics and endogenous materials. The central hypothesis of our work is that human subjects with mutant HLFMO3 are predisposed to potentially dangerous disease states and the best method to study the effect of HLFMO3 structure on function is to begin parallel investigations of a mutant HLFMO3 identified from a human population. Because we have made significant progress in recent years towards developing several unique biochemical and molecular methods for the study of HLFMO3, it will be possible to rapidly determine a role of this enzyme in human drug and chemical biotransformations and human disease conditions. The proposal studies are divided into three major sections: 1) Confirm the identity and function of a region of mutant HLFMO3 involved in a human disease state, 2) Construct a HLFMO3 cDNA library and select and then express enzyme activity in E. coli, and 3) Examine the biochemical and physical properties of active cDNA-expressed HLFMO3 mutants.
The specific aims of section 1 include the verification of the sequence of adult HLFMO3 by comparing the structure of the isolated and purified wild-type enzyme with that of the mutant enzyme deduced from the cDNA isolated from human trimethylaminuria patients.
The specific aims of section 2 include construction of a cDNA library of 7 19 plasmic-encoded HLFMO3 genes (as well as the cDNA for the mutant(s) observed in trimethylaminuria patients), selection based on a novel screening procedure and expression of the active HLFMO3 mutants in E. coli.
The specific aims of section 3 include the verification of HLFMO3 enzyme activity utilizing rapid, efficient and highly sensitive HPLC methods for determination of endogenous and novel selective functional substrate activity. Comparison of the effects of altered amino acids on enzyme activity will be done with a determination of substrate free energy binding compared with wild-type enzyme. We will also specifically examine mutant HLFMO3 enzymes for enhanced thermostability because evolutionary selection for thermal stability may be almost as important as catalytic activity. The results of the present study will provide a detailed picture of the function of HLFMO3. The study will provide a basis for understanding a role of HLFMO3 in endogenous and xenobiotic human metabolism. The significance of the work is that it will lead to a more sophisticated understanding of a role of HLFMO3 in human disease and human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM036426-04A3
Application #
2178357
Study Section
Chemical Pathology Study Section (CPA)
Project Start
1988-09-19
Project End
1998-12-31
Budget Start
1995-01-01
Budget End
1995-12-31
Support Year
4
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Seattle Biomedical Research Institute
Department
Type
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98109
Zhao, Y; Christensen, S K; Fankhauser, C et al. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306-9
Forrest, S M; Knight, M; Akerman, B R et al. (2001) A novel deletion in the flavin-containing monooxygenase gene (FMO3) in a Greek patient with trimethylaminuria. Pharmacogenetics 11:169-74
Cashman, J R; Zhang, J; Leushner, J et al. (2001) Population distribution of human flavin-containing monooxygenase form 3: gene polymorphisms. Drug Metab Dispos 29:1629-37
Cashman, J R; Akerman, B R; Forrest, S M et al. (2000) Population-specific polymorphisms of the human FMO3 gene: significance for detoxication. Drug Metab Dispos 28:169-73
Cashman, J R (2000) Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr Drug Metab 1:181-91
Cashman, J R; Xiong, Y N; Xu, L et al. (1999) N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication. J Pharmacol Exp Ther 288:1251-60
Cashman, J R (1998) Stereoselectivity in S- and N-oxygenation by the mammalian flavin-containing and cytochrome P-450 monooxygenases. Drug Metab Rev 30:675-707
Korsmeyer, K K; Guan, S; Yang, Z C et al. (1998) N-Glycosylation of pig flavin-containing monooxygenase form 1: determination of the site of protein modification by mass spectrometry. Chem Res Toxicol 11:1145-53
Treacy, E P; Akerman, B R; Chow, L M et al. (1998) Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Hum Mol Genet 7:839-45
Cashman, J R (1997) Biocatalysts in detoxication of drugs of abuse. NIDA Res Monogr 173:225-58

Showing the most recent 10 out of 42 publications