The object of this proposal is to extend our previous studies via the synthesis of a series of novel bicyclic and tricyclic antifolates and their biological evaluations as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystic carinii (PC) and Toxoplasmosis gondii (TG) and as potential inhibitors of these organisms which cause fatal infections in patients with acquired immunodeficiency syndrome (AIDS). Further, the synergistic effects, if any, with sulfa drugs are also proposed. The target compounds are 2,4-diaminopyrido[2,3-d]pyrimidine derivatives which are designed based on trimetrexate (TMQ) 1 and a 5,10-dimethylpyrido[2,3- d]pyrimidine analog 4 of TMQ, which we have recently identified to be a more potent and selective inhibitor of PC DHFR than TMQ and a significantly more potent (12x) and selective (31x) inhibitor of TG DHFR than TMQ. We intend to carry out a structure activity/selectivity study of compound 4 to identify the most potent and/or selective candidates for animal and perhaps clinical trials. This proposal specifically addresses the importance of the phenyl ring substituents (compounds 6-25), the N10-substituents (compounds 26-31), the importance of the N10-nitrogen (compounds 32-33), the N8-nitrogen (compound 53) and the conformational restrictions of the 6- anilinomethy side chain (compounds 34-52) of 4 as it pertains to inhibition and selectivity against PC and TG. The rigid analogs (34-52) incorporate the flexible 3,4,5-trimethoxyanilinomethyl side chain of 1 and 4 as parts of ring systems to provide specific restricted rotations in an attempt to define the optimum side chain conformation for potency and/or selectivity. The synthesis of the target compounds are proposed via suitable modifications of methods developed in our laboratory and by modifications of established literature procedures. The biological studies will be performed on a collaborative basis with Dr. Sherry F. Queener, University of Indiana, School of Medicine and Dr. David S. Roos, University of Pennsylvania, School of Medicine. In the absence of any structural information of PC DHFR and TG DHFR and the urgent need for better, less toxic agents, this study will provide a better understanding of the structural and stereochemical requirements for inhibition of and/or selectivity for DHFR from PC and TG and the infections of these organisms. Further, this study may provide selective, less toxic, clinically useful agents and lead to the rational design of selective antifolates to be used alone or in combination therapy against PC and TG infections in AIDS patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM040998-04
Application #
3298986
Study Section
AIDS and Related Research Study Section 4 (ARRD)
Project Start
1988-08-01
Project End
1994-11-30
Budget Start
1991-12-15
Budget End
1992-11-30
Support Year
4
Fiscal Year
1992
Total Cost
Indirect Cost
Name
Duquesne University
Department
Type
Schools of Pharmacy
DUNS #
004501193
City
Pittsburgh
State
PA
Country
United States
Zip Code
15282
Cody, Vivian; Luft, Joe R; Pangborn, Walt et al. (2004) Structure determination of tetrahydroquinazoline antifolates in complex with human and Pneumocystis carinii dihydrofolate reductase: correlations between enzyme selectivity and stereochemistry. Acta Crystallogr D Biol Crystallogr 60:646-55
Gangjee, A; Elzein, E; Queener, S F et al. (1998) Synthesis and biological activities of tricyclic conformationally restricted tetrahydropyrido annulated furo[2,3-d]pyrimidines as inhibitors of dihydrofolate reductases. J Med Chem 41:1409-16
Gangjee, A; Zhu, Y; Queener, S F (1998) 6-Substituted 2,4-diaminopyrido[3,2-d]pyrimidine analogues of piritrexim as inhibitors of dihydrofolate reductase from rat liver, Pneumocystis carinii, and Toxoplasma gondii and as antitumor agents. J Med Chem 41:4533-41
Gangjee, A; Vidwans, A P; Vasudevan, A et al. (1998) Structure-based design and synthesis of lipophilic 2,4-diamino-6-substituted quinazolines and their evaluation as inhibitors of dihydrofolate reductases and potential antitumor agents. J Med Chem 41:3426-34
Gangjee, A; Guo, X; Queener, S F et al. (1998) Selective Pneumocystis carinii dihydrofolate reductase inhibitors: design, synthesis, and biological evaluation of new 2,4-diamino-5-substituted-furo[2,3-d]pyrimidines. J Med Chem 41:1263-71
Gangjee, A; Vasudevan, A; Queener, S F (1997) Synthesis and biological evaluation of nonclassical 2,4-diamino-5-methylpyrido[2,3-d]pyrimidines with novel side chain substituents as potential inhibitors of dihydrofolate reductases. J Med Chem 40:479-85
Gangjee, A; Shi, J; Queener, S F (1997) Synthesis and biological activities of conformationally restricted, tricyclic nonclassical antifolates as inhibitors of dihydrofolate reductases. J Med Chem 40:1930-6
Gangjee, A; Mavandadi, F; Queener, S F (1997) Effect of N9-methylation and bridge atom variation on the activity of 5-substituted 2,4-diaminopyrrolo[2,3-d]pyrimidines against dihydrofolate reductases from Pneumocystis carinii and Toxoplasma gondii. J Med Chem 40:1173-7
Gangjee, A; Vasudevan, A; Queener, S F (1997) Conformationally restricted analogues of trimethoprim: 2,6-diamino-8-substituted purines as potential dihydrofolate reductase inhibitors from Pneumocystis carinii and Toxoplasma gondii. J Med Chem 40:3032-9
Gangjee, A; Zhu, Y; Queener, S F et al. (1996) Nonclassical 2,4-diamino-8-deazafolate analogues as inhibitors of dihydrofolate reductases from rat liver, Pneumocystis carinii, and Toxoplasma gondii. J Med Chem 39:1836-45

Showing the most recent 10 out of 23 publications