The oxidoreductase superfamily is responsible for a very broad range of oxidative and reductive chemical transformations and energy conversions throughout biology. Many key members align cofactors such as chlorins, hemes, iron-sulfur clusters, flavins, quinones and metals to form single-electron-transfer chains through protein over multi-nanometer distances. At their termini, electrons exchange with sites of diffusible one-electron carriers (e. g. cytochrome c, plastocyanin) or sites of two-electron (flavin, quinone and nicotinamide) or four-electron (oxygen) oxidative and reductive catalysis. With the common catalytic features and a shared electron-tunneling engineering understood to a useful practical level, we have learned how to reproduce selected natural oxidoreductases functions by practical assembly in completely artificial proteins built from scratch. We are now poised to assemble the components into extended single-electron-transfer chains, to construct operating two-electron catalytic termini akin to those seen in Nature, and to functionally connect these chains and termini. We exploit the simplicity and adaptability of these artificial proteins we call maquettes, and their freedom from the obscuring complexity and fragility of natural proteins. The maquettes form a type of laboratory to uncover new insights into oxidative metabolism and energy conversion during normal operation of natural electron-transfer systems in respiration, into the vulnerabilities to oxidative damage during physiological operation and into their failure under conditions of stress or disease. We also aim to bridge the gap between hopeful bio-inspiration and the reality of practical reproduction of the remarkable catalytic capability of natural oxidoreductases in settings that can be put to work for human needs.

Public Health Relevance

Reproduction of natural enzyme function in a man-made material remains a major challenge to biological chemists. The benefits of such achievement include the development of new medical interventions, and clinical devices, and an array of new inexpensive green catalysts important in ecology, agriculture and solar energy conversions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM041048-25
Application #
8586267
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
1989-02-01
Project End
2014-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
25
Fiscal Year
2014
Total Cost
$360,000
Indirect Cost
$135,000
Name
University of Pennsylvania
Department
Biochemistry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Lichtenstein, Bruce R; Bialas, Chris; Cerda, José F et al. (2015) Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. Angew Chem Int Ed Engl 54:13626-9
Solomon, Lee A; Kodali, Goutham; Moser, Christopher C et al. (2014) Engineering the assembly of heme cofactors in man-made proteins. J Am Chem Soc 136:3192-9
Anderson, J L Ross; Armstrong, Craig T; Kodali, Goutham et al. (2014) Constructing a man-made c-type cytochrome maquette in vivo: electron transfer, oxygen transport and conversion to a photoactive light harvesting maquette. Chem Sci 5:507-514
Farid, Tammer A; Kodali, Goutham; Solomon, Lee A et al. (2013) Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat Chem Biol 9:826-833
Raju, Gheevarghese; Capo, Joseph; Lichtenstein, Bruce R et al. (2012) Manipulating Reduction Potentials in an Artificial Safranin Cofactor. Tetrahedron Lett 53:1201-1203
Lichtenstein, Bruce R; Farid, Tammer A; Kodali, Goutham et al. (2012) Engineering oxidoreductases: maquette proteins designed from scratch. Biochem Soc Trans 40:561-6
Lichtenstein, Bruce R; Moorman, Veronica R; Cerda, José F et al. (2012) Electrochemical and structural coupling of the naphthoquinone amino acid. Chem Commun (Camb) 48:1997-9
Dutton, P Leslie; Moser, Christopher C (2011) Engineering enzymes. Faraday Discuss 148:443-8
Zhang, Lei; Anderson, J L Ross; Ahmed, Ismail et al. (2011) Manipulating cofactor binding thermodynamics in an artificial oxygen transport protein. Biochemistry 50:10254-61
Cui, Dongtao; Koder, Ronald L; Dutton, P Leslie et al. (2011) 15N solid-state NMR as a probe of flavin H-bonding. J Phys Chem B 115:7788-98

Showing the most recent 10 out of 26 publications