The long-term objective of this research program is to understand the molecular mechanisms of homologous recombination (HR) in a model eukaryote, the budding yeast Saccharomyces cerevisiae. HR plays an essential role in the maintenance of genome integrity by repairing cytotoxic lesions, such as double-strand breaks (DSBs), and it is essential for the pairing and segregation of homologous chromosomes during meiosis. The importance of these functions is evidenced by increased mutagenesis, chromosome rearrangements, and mitotic and meiotic aneuploidy in the absence of HR. Since many human cancer prone syndromes are associated with increased genome instability, an understanding of the mechanisms of HR is likely to be important in understanding these diseases. HR initiates at single-stranded DNA (ssDNA) formed by 5'-3' resection of DSBs, or at stalled replication forks. The single-stranded DNA formed functions as a sensor for the DNA damage response and is the substrate for Rad51 catalyzed strand exchange between the ssDNA bound by Rad51 and homologous duplex DNA. Until recently, the identity of the resection nuclease(s) was unknown. Our studies suggest a two-step mechanism for the 5'-3' resection of DNA ends: first the Mre11 complex and Sae2 remove short oligonucleotides from the 5'end, second, Exo1 or Sgs1 and Dna2 carry out extensive resection of the tailed intermediate. Having identified the critical factors involved in DNA end processing the aims of the new proposal are: (1) To determine the order of assembly of the resection proteins at DSBs, how end processing is regulated during the cell cycle, the contribution of each protein in processing different types of ends and how the DNA damage response regulates end resection. (2) The rates of spontaneous and DSB-induced recombination and chromosome loss will be measured in nuclease-defective mutants to determine the role of resection in maintenance of genome integrity. (3) The role of each of the identified resection nucleases in telomere length homeostasis, G-tail formation, degradation of uncapped telomeres and survival in the absence of telomerase will be determined.

Public Health Relevance

The repair of DNA double-strand breaks by homologous recombination is essential to maintain genome integrity and to guard against cancer in humans. In this proposal, genetic, cell biology and physical approaches will be used to determine the molecular mechanisms of DSB processing and cell cycle regulation of this process, and the role of end resection in telomere maintenance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM041784-24
Application #
8247754
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Janes, Daniel E
Project Start
1989-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
24
Fiscal Year
2012
Total Cost
$500,326
Indirect Cost
$189,565
Name
Columbia University (N.Y.)
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Gnügge, Robert; Oh, Julyun; Symington, Lorraine S (2018) Processing of DNA Double-Strand Breaks in Yeast. Methods Enzymol 600:1-24
Gnügge, Robert; Symington, Lorraine S (2017) Keeping it real: MRX-Sae2 clipping of natural substrates. Genes Dev 31:2311-2312
Oh, Julyun; Al-Zain, Amr; Cannavo, Elda et al. (2016) Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Mol Cell 64:405-415
Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor et al. (2016) RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication. Cell Rep 17:3359-3368
Wei, Jia; Zhang, Yixiao; Yu, Tai-Yuan et al. (2016) A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation. Cell Discov 2:16044
Symington, Lorraine S (2016) Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol 51:195-212
Ciccia, Alberto; Symington, Lorraine S (2016) Stressing Out About RAD52. Mol Cell 64:1017-1019
Chen, Huan; Donnianni, Roberto A; Handa, Naofumi et al. (2015) Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling. Proc Natl Acad Sci U S A 112:E1880-7
Deng, Sarah K; Chen, Huan; Symington, Lorraine S (2015) Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity. Bioessays 37:305-13
Deng, Sarah K; Yin, Yi; Petes, Thomas D et al. (2015) Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification. Mol Cell 60:500-8

Showing the most recent 10 out of 57 publications