Carbohydrates can be used as vaccines if they are covalently conjugated to a carrier protein. However, some carbohydrate antigens remain poor immunogens even when coupled to a protein. To overcome this weakness, chemical alteration of the native carbohydrate has been proposed. While these modifications can lead to enhanced immunogenicity, the repertoire of antibodies may have a compromised ability to recognize the original native antigen. Consistent native-like immune responses depend on maintaining the same 3D epitope in the vaccine as that in the native antigen. Experimental methods such as NMR spectroscopy and protein crystallography are the cornerstones of 3D structural characterization, but each method faces difficulties when applied to highly flexible carbohydrates and polysaccharides and their complexes with proteins. Here we will use computational methods to provide models for these complexes, using a combination of automated docking, molecular dynamics (MD) and thermodynamic integration (TI) simulations, and test the validity of these models by comparison with existing 3D structural data for carbohydrate-antibody complexes. Concurrently, we will apply the emerging experimental technique of oxidative protein surface footprinting [1, 2], to generate high-throughput, medium resolution experimental data for use as structural constraints to guide the computational docking. These studies will provide a comprehensive, validated, relatively rapid and high-throughput approach characterizing the 3D structures of antibody carbohydrate complexes, which will additionally enable us to characterize the impacts of chemical modifications on the 3D properties of carbohydrate antigens.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Wehrle, Janna P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Georgia
Organized Research Units
United States
Zip Code
DeMarco, Mari L; Woods, Robert J (2011) From agonist to antagonist: structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. Mol Immunol 49:124-33
Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J et al. (2011) Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc human-type influenza receptor. Glycobiology 21:973-84
Frank, Aaron T; Ramsook, Caleen B; Otoo, Henry N et al. (2010) Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. Eukaryot Cell 9:405-14
Woods, Robert J; Tessier, Matthew B (2010) Computational glycoscience: characterizing the spatial and temporal properties of glycans and glycan-protein complexes. Curr Opin Struct Biol 20:575-83
Charvatova, Olga; Foley, B Lachele; Bern, Marshall W et al. (2008) Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: application to galectin-1. J Am Soc Mass Spectrom 19:1692-705
Kadirvelraj, Renuka; Foley, B Lachele; Dyekjaer, Jane D et al. (2008) Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J Am Chem Soc 130:16933-42
Case, David A; Cheatham 3rd, Thomas E; Darden, Tom et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668-88
Bosques, Carlos J; Tschampel, Sarah M; Woods, Robert J et al. (2004) Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc 126:8421-5
Gonzalez-Outeirino, Jorge; Glushka, John; Siriwardena, Aloysius et al. (2004) The structure and conformational behavior of sulfonium salt glycosidase inhibitors in solution: a combined quantum mechanical NMR approach. J Am Chem Soc 126:6866-7
Tschampel, Sarah M; Woods, Robert J (2003) Quantifying the role of water in protein-carbohydrate interactions. J Phys Chem A 107:9175-81

Showing the most recent 10 out of 15 publications