Genetic competence is defined as the ability of bacterial cells to bind and internalize high molecular weight DNA, which may then be established as an autonomous replicon or recombine with a resident DNA molecule. Competence in Bacillus subtilis is one of several post-exponentially expressed systems, the best characterized of which is sporulation. The present study is directed towards unraveling the complex network of events that determine the onset of competence expression in response to a set of nutritional, growth stage and cell-type specific signals. This network is known to include at least one phosphorylation cascade and possibly several, and included a likely transmembrane signaling event. We will investigate the role of the two-component regulators, ComP and ComQ, in signaling the onset of transcription of srfA, a key intermediate in the regulatory pathway. We will investigate the role of comK in competence regulation and that of MecA, a probable negative regulator of several post-exponential expression systems. We will also attempt to clone and characterize ctf, which appears to encode a transcriptional activator of late competence genes. The interaction of this regulatory pathway with those governing other post-exponential expression systems will also be studied.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM057720-28
Application #
2838633
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Program Officer
Anderson, James J
Project Start
1977-06-01
Project End
2001-11-30
Budget Start
1998-12-01
Budget End
1999-11-30
Support Year
28
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Public Health Research Institute
Department
Type
DUNS #
City
Newark
State
NJ
Country
United States
Zip Code
07103
Tanner, Andrew W; Carabetta, Valerie J; Dubnau, David (2018) ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Mol Microbiol 108:178-186
Diethmaier, Christine; Chawla, Ravi; Canzoneri, Alexandra et al. (2017) Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 106:367-380
Carabetta, Valerie J; Cristea, Ileana M (2017) Regulation, Function, and Detection of Protein Acetylation in Bacteria. J Bacteriol 199:
Tanner, Andrew W; Carabetta, Valerie J; Martinie, Ryan J et al. (2017) The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S]2+ clusters and may respond to redox changes. Mol Microbiol 104:837-850
Dubnau, Eugenie J; Carabetta, Valerie J; Tanner, Andrew W et al. (2016) A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 101:606-24
Miras, Mathieu; Dubnau, David (2016) A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 7:1868
Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W et al. (2016) Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth. mSystems 1:
Hahn, Jeanette; Tanner, Andrew W; Carabetta, Valerie J et al. (2015) ComGA-RelA interaction and persistence in the Bacillus subtilis?K-state. Mol Microbiol 97:454-71
Carabetta, Valerie J; Tanner, Andrew W; Greco, Todd M et al. (2013) A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Mol Microbiol 88:283-300
Mirouze, Nicolas; Dubnau, David (2013) Chance and Necessity in Bacillus subtilis Development. Microbiol Spectr 1:

Showing the most recent 10 out of 49 publications