? The scope of this proposal is to study the function of mammalian lysosomal neuraminidase (NEU1) in normal cell metabolism, and the consequences of its loss in human diseases. NEU1 belongs to the ubiquitous superfamily of sialidases. Mammalian neuraminidases include cytosolic, lysosomal, and plasma membrane isoforms, and clues about the physiologic roles of these hydrolases, in particular NEU1, have emerged only recently. NEU1 initiates the hydrolysis of sialo-glyconjugates by removing terminal sialic acid residues. The enzyme is unique among sialidases in that it must be associated with protective protein/cathepsin A (PPCA) for intracellular routing and lysosomal activation. Finally, NEU1 is linked to 2 neurodegenerative diseases of metabolism: Sialidosis is caused by structural lesions in NEU1, and galactosialidosis (GS), a combined deficiency of NEU1 and (3-galactosidase, is caused by the absence of PPCA. The proposed studies are based on 3 Specific Aims.
In Aim 1, we will investigate the structure- function relationship between NEU1 and PPCA. The 3D structure of the PPCA precursor will be used to target mutagenesis of potential contact sites between the 2 proteins and NEU1 mutations identified in patients with sialidosis. We will also use overlapping peptides that span the full-length PPCA and NEU1 to identify domains crucial for NEU1/PPCA interaction, intracellular transport, and activation. These biochemical studies will be coupled to determine the 3D structure of the Neu1/PPCA complex.
In Aim 2, we will compare the characteristics of Neu1~*~ mice and PPCA^~ mice to determine the molecular bases of sialidosis and GS and to identify yet unknown Neu1 functions in normal cell physiology.
In Aim 3, we will implement various enzyme replacement therapy approaches in both models to assess the correction of the systemic phenotypes in these diseases. We are in position to develop this line of investigation, because we have established appropriate genetic and biochemical systems for the proposed studies and can rely on the expertise of an outstanding structural biologist for the crystallography part of the project. Our overall goal is to gain a broader understanding of NEU1 function in normal physiology and in the pathophysiology of the neurodegenerative diseases sialidosis and GS. These diseases affect primarily infants and children. Findings from these proposed studies should increase our knowledge about NEU1 function and improve the design of future therapies for pediatric patients with these catastrophic diseases. ? ? ?

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GTIE-A (01))
Program Officer
Marino, Pamela
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Jude Children's Research Hospital
United States
Zip Code
Neves, Juliana de Carvalho; Rizzato, Vanessa Rodrigues; Fappi, Alan et al. (2015) Neuraminidase-1 mediates skeletal muscle regeneration. Biochim Biophys Acta 1852:1755-64
d'Azzo, Alessandra; Machado, Eda; Annunziata, Ida (2015) Pathogenesis, Emerging therapeutic targets and Treatment in Sialidosis. Expert Opin Orphan Drugs 3:491-504
Bonten, Erik J; Annunziata, Ida; d'Azzo, Alessandra (2014) Lysosomal multienzyme complex: pros and cons of working together. Cell Mol Life Sci 71:2017-32
Annunziata, Ida; Patterson, Annette; Helton, Danielle et al. (2013) Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-? secretion via deregulated lysosomal exocytosis. Nat Commun 4:2734
Bonten, Erik J; Yogalingam, Gouri; Hu, Huimin et al. (2013) Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochim Biophys Acta 1832:1784-92
Zanoteli, Edmar; van de Vlekkert, Diantha; Bonten, Erik J et al. (2010) Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim Biophys Acta 1802:659-72
d'Azzo, Alessandra; Bonten, Erik (2010) Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease. Biochem Soc Trans 38:1453-7
Wu, Xudong; Steigelman, Katherine A; Bonten, Erik et al. (2010) Vacuolization and alterations of lysosomal membrane proteins in cochlear marginal cells contribute to hearing loss in neuraminidase 1-deficient mice. Biochim Biophys Acta 1802:259-68
Wang, Dongning; Zaitsev, Slava; Taylor, Garry et al. (2009) Protective protein/cathepsin A rescues N-glycosylation defects in neuraminidase-1. Biochim Biophys Acta 1790:275-82
Bonten, Erik J; Campos, Yvan; Zaitsev, Viateslav et al. (2009) Heterodimerization of the sialidase NEU1 with the chaperone protective protein/cathepsin A prevents its premature oligomerization. J Biol Chem 284:28430-41

Showing the most recent 10 out of 20 publications