Positive-strand RNA viruses are serious pathogens causing encephalitis, hemorrhagic fever and hepatitis in humans and animals and devastating crop losses in plants. Despite extensive studies, replication of these viruses remains poorly understood. A major stumbling block in efforts to fully understand virus replication is the large size of viral genomes, which complicates efforts to link RNA structure with RNA function. We have discovered that a novel conformational switch activates (-)-strand synthesis in satC (356 nt) associated with the model virus Turnip crinkle (TCV;4054 nt). Since satC contains all sequences and structures necessary for replication by the TCV RdRp, studying its replication in the past has provided significant information subsequently found to be applicable to much larger viral genomes, including those that cause significant diseases in humans and animals. Analyses of satC and TCV replication elements has revealed astonishing complexities and differences in how satC and TCV use nearly identical sequences to replicate their genomes, which has important implications for interpretation of results using subviral RNA replicons. In this proposal, we will use biophysical and genetic approaches to define secondary and tertiary interactions that characterize the satC pre-active structure and structural transitions of wt and mutant satC. Full length and selected satC fragments will be analyzed by temperature gradient gel electrophoresis, UV melting curves, oligonucleotide accessibility and UV cross-linking. Site-specific mutagenesis and in vivo genetic selection (selex) will help define individual elements and the relationship between elements. We will also use mutagenesis approaches combined with RdRp binding analyses to explore TCV sequences that are uniquely important for (-)-strand synthesis although also found in satC. Finally, we will examine RdRp binding to specific satC and TCV hairpins and determine if elements that flank one satC hairpin affect satC replication while simultaneously interfering with TCV replication and repressing virion accumulation function through an interaction between the two viral RNAs. Successful completion of these experiments will provide new paradigms for virus replication and interactions between helper viruses and associated subviral RNAs and provide the most detailed understanding of RNA conformational switches and the steps that lead to initiation of (-)-strand synthesis for any RNA virus.
Showing the most recent 10 out of 26 publications