Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM065405-02S1
Application #
6946127
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Tompkins, Laurie
Project Start
2003-01-01
Project End
2006-12-31
Budget Start
2004-01-01
Budget End
2004-12-31
Support Year
2
Fiscal Year
2004
Total Cost
$21,900
Indirect Cost
Name
North Carolina State University Raleigh
Department
Anatomy/Cell Biology
Type
Schools of Veterinary Medicine
DUNS #
042092122
City
Raleigh
State
NC
Country
United States
Zip Code
27695
Kim, Tae-Hyung; Chiera, Shannon L; Linder, Keith E et al. (2010) Overexpression of transcription factor sp2 inhibits epidermal differentiation and increases susceptibility to wound- and carcinogen-induced tumorigenesis. Cancer Res 70:8507-16
Xie, Jianzhen; Yin, Haifeng; Nichols, Teresa D et al. (2010) Sp2 is a maternally inherited transcription factor required for embryonic development. J Biol Chem 285:4153-64
Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M (2010) Transcription of mouse Sp2 yields alternatively spliced and sub-genomic mRNAs in a tissue- and cell-type-specific fashion. Biochim Biophys Acta 1799:520-31
Moorefield, K Scott; Yin, Haifeng; Nichols, Teresa D et al. (2006) Sp2 localizes to subnuclear foci associated with the nuclear matrix. Mol Biol Cell 17:1711-22
Simmons, Steven O; Horowitz, Jonathan M (2006) Nkx3.1 binds and negatively regulates the transcriptional activity of Sp-family members in prostate-derived cells. Biochem J 393:397-409
Spengler, Mary L; Kennett, Sarah B; Moorefield, K Scott et al. (2005) Sumoylation of internally initiated Sp3 isoforms regulates transcriptional repression via a Trichostatin A-insensitive mechanism. Cell Signal 17:153-66
Moorefield, K Scott; Fry, Sarah J; Horowitz, Jonathan M (2004) Sp2 DNA binding activity and trans-activation are negatively regulated in mammalian cells. J Biol Chem 279:13911-24