The human cell division cycle is governed by elegant regulatory pathways, many of them conserved throughout eukaryotes, which ensure that major events occur in the proper order and that progression to the next phase is delayed until defects can be corrected. Previous work indicates that Cyclin dependent kinase 2 (Cdk2) is required for initiation of DNA synthesis in human cells and that Cdk1 (Cdc2) is required for initiation of mitosis. Mounting evidence suggests that Cdk2 plays another role by fostering Cdk1 activation. In preliminary studies, a facile experimental system was established to better define the roles of Cdk2. Stable U2-OS cell clones were generated with inducible expression of wild type and dominant-negative forms of the enzyme (Cdk2-wt and Cdk2-dn, respectively). Cdk2-wt had no apparent effect on the cell division cycle, whereas Cdk2-dn primarily arrested cells in G2 phase: these cells contained replicated DNA, uncondensed chromosomes, low levels of Cdk1 kinase activity, and high levels of tyrosine-phosphorylated Cdk1, an inactive form of the enzyme. These findings solidified the evidence that Cdk2 is needed for activation of Cdk1. Further investigation identified specific effects of Cdk2-dn on the Cdk1 activators Plk1, Cdc25C, and Cdc25B and the Cdk1 inhibitor Wee1. We now report that interfering with expression of cyclin A, one of the Cdk2 activating subunits, imposed S and G2/M delays in normal human fibroblasts and qualitatively reproduced the major biochemical effects observed with Cdk2-dn induction in U2-OS cells. We therefore hypothesize that cyclin A/Cdk2 complexes play a major role in mitotic entry by antagonizing tyrosine phosphorylation of Cdk1. We propose to explore this hypothesis through four interrelated specific aims: 1) To delineate the S and G2 phase Cdk complexes that foster Cdk1 activation, 2) To determine the mechanism by which Cdk2 increases Plk1 levels and its impact on mitotic entry, 3) To determine the mechanism by which Cdk2 mediates activation of Cdc25C and Cdc25B, and 4) To determine the mechanism by which Cdk2 mediates phosphorylation of Wee1. We will accomplish these aims through systematic biochemical analysis of the effects of inhibition and depletion of the relevant factors in replicating cells. The proposed work will define functions of Cdk complexes that link the two major phases of cell replication. These functions appear to be subject to physiologic regulation by checkpoint pathways that inhibit entry into mitosis in response to DNA damage. We believe that deregulation of Cdk2, a frequent event in cancer, may contribute to genetic instability and neoplastic progression through deregulation of these functions.