Protein switches hold great promise as selective protein therapeutics and as biosensors for diagnostic and basic science applications;however, the creation of such proteins has proven difficult. We propose to create protein switches for these applications using a combinatorial method we developed that views all existing proteins as potential input and output modules for the desired switch. We will create a protein switch that will activate a prodrug only in cancer cells. Such a switch would have potential as a targeted therapeutic for the treatment of cancer. In addition, we will create switches to be used as sensors for kinases in vitro and in live cells. Switches to be used as sensors will be developed on a platform such that sensors for other proteins will be more readily created. Experiments proposed will also inform the study of how best to create switches.

Public Health Relevance

Engineered protein switches hold great promise as selective protein therapeutics and as biosensors for diagnostic and basic science applications. We will develop switches designed for the treatment of cancer and switches designed to be used as sensors for the detection and quantification of important protein kinases in vitro and in live cells.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Shelat, Nirav Y; Parhi, Sidhartha; Ostermeier, Marc (2017) Development of a cancer-marker activated enzymatic switch from the herpes simplex virus thymidine kinase. Protein Eng Des Sel 30:95-103
Ribeiro, Lucas Ferreira; Tullman, Jennifer; Nicholes, Nathan et al. (2016) A xylose-stimulated xylanase-xylose binding protein chimera created by random nonhomologous recombination. Biotechnol Biofuels 9:119
Shelat, Nirav Y; Parhi, Sidhartha; Ostermeier, Marc (2016) A Positive Selection for Nucleoside Kinases in E. coli. PLoS One 11:e0162921
Choi, Jay H; Xiong, Tina; Ostermeier, Marc (2016) The interplay between effector binding and allostery in an engineered protein switch. Protein Sci 25:1605-16
Choi, Jay H; Zayats, Maya; Searson, Peter C et al. (2016) Electrochemical activation of engineered protein switches. Biotechnol Bioeng 113:453-6
Nicholes, N; Date, A; Beaujean, P et al. (2016) Modular protein switches derived from antibody mimetic proteins. Protein Eng Des Sel 29:77-85
Choi, Jay H; Ostermeier, Marc (2015) Rational design of a fusion protein to exhibit disulfide-mediated logic gate behavior. ACS Synth Biol 4:400-6
Choi, Jay H; Laurent, Abigail H; Hilser, Vincent J et al. (2015) Design of protein switches based on an ensemble model of allostery. Nat Commun 6:6968
Wright, R Clay; Khakhar, Arjun; Eshleman, James R et al. (2014) Advancements in the development of HIF-1?-activated protein switches for use in enzyme prodrug therapy. PLoS One 9:e114032
Chaikind, Brian; Ostermeier, Marc (2014) Directed evolution of improved zinc finger methyltransferases. PLoS One 9:e96931

Showing the most recent 10 out of 21 publications