Methionine is an important source of alkylating equivalents in living cells. As S-adenosylmethionine (SAM), the terminal methyl group of methionine is used in a wide array of transmethylation reactions in vivo, and the ethylglycine moiety feeds into polyamine biosynthesis in rapidly proliferating cells. Interest in the metabolic fate of methionine is raised by the observation that many human cancer cell lines are methionine dependent, and that methylthioadenosine (MTA), a product of SAM metabolism, is a potent feedback inhibitor of polyamine biosynthesis, which in turn stops DNA replication and prevents continuation of the cell cycle. There is evidence suggesting that the methionine salvage pathway, which is responsible for recycling the S-OH3 group from MTA to methionine, is defective in methionine-dependent cancer cell lines. This proposal describes an in-depth investigation into the structure and function of a remarkable metalloenzyme from the methionine salvage pathway of the bacterium Klebsiella pneumoniae, acireductone dioxygenase (ARD). ARD can catalyze two different reactions with the same substrate depending upon the metal ion that is bound to the enzyme active site. ARD containing a single Ni+2 ion catalyzes the oxidative cleavage of acireductone, an advanced intermediate in the methionine salvage pathway, into beta-methylthiopropionate, formate and carbon monoxide (CO) in an off-pathway shunt. If a Fe+2 ion is bound instead of nickel (ARD'), the on-pathway reaction leading to formate and the ketoacid precursor of methionine, alpha-keto-gamma-methylthiobutyrate is catalyzed. A structure for Ni-bound ARD has recently been solved by NMR methods, and mechanistic studies have provided evidence for a radical mechanism for the reaction catalyzed by ARD. The general aims of the proposed work include: (1) Determination of the solution structure of ARD' and an analysis of the structural differences between ARD and ARD' that lead to their different activities. Site-directed mutagenesis, enzyme activity and kinetics measurements and NMR studies of stable enzyme-substrate complexes will be performed. (2) Expression, isolation, purification and characterization of ARD homologues from two eukaryotes, rice (Oriza sativa) and humans (Homo sapiens). In particular, evidence for in-vitro and in-vivo ARD activity will be sought (i.e., CO production), since there is now considerable evidence that CO can act as a signaling molecule and an inhibitor of apoptosis (programmed cell death).
Showing the most recent 10 out of 13 publications