The long-term objective for the research described in this proposal is the design and construction of a robust catalytic system that can be exploited for the decontamination, destruction, and detection of organophosphate nerve agents. The nerve agents sarin (GB), soman (GD), and VX are among the most toxic and deadly nerve agents ever reported. Since these compounds are easy to synthesize and distribute, they represent a serious threat to the health and well being of civilized societies. In order to prepare a system that can detoxify organophosphate nerve agents, we will manipulate and enhance the enzymatic power of wild type proteins to serve as catalysts for the recognition and hydrolytic turnover of these highly toxic materials. It has been demonstrated that the catalytic machinery embedded within the active sites of the bacterial phosphotriesterase and alpha-prolidase are capable of hydrolyzing certain organophosphate nerve agents such as paraoxon at the diffusion controlled limit. The active site structures of these enzymes will be re- engineered through rational and combinatorial mutagenesis techniques to create libraries of mutant enzymes with altered catalytic properties. These enzyme libraries will be efficiently evaluated with high throughput screening protocols using fluorescence and visible spectroscopy with chiral analogs of GB, GD, and VX. The catalytic activities with the restricted nerve agents will be optimized through a direct collaboration with the DeFrank group at the Aberdeen Proving Ground. The structural analyses of the wild type and mutant proteins will be conducted by the Holden group at Wisconsin.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Biochemistry Study Section (BIO)
Program Officer
Ikeda, Richard A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Texas A&M University
Schools of Arts and Sciences
College Station
United States
Zip Code
Bigley, Andrew N; Raushel, Frank M (2013) Catalytic mechanisms for phosphotriesterases. Biochim Biophys Acta 1834:443-53
Bigley, Andrew N; Xu, Chengfu; Henderson, Terry J et al. (2013) Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. J Am Chem Soc 135:10426-32
Meier, Monika M; Rajendran, Chitra; Malisi, Christoph et al. (2013) Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 135:11670-7
Tsai, Ping-Chuan; Fox, Nicholas; Bigley, Andrew N et al. (2012) Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Biochemistry 51:6463-75
Tsai, Ping-Chuan; Fan, Yubo; Kim, Jungwook et al. (2010) Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase. Biochemistry 49:7988-97
Tsai, Ping-Chuan; Bigley, Andrew; Li, Yingchun et al. (2010) Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase. Biochemistry 49:7978-87
Kim, Jungwook; Tsai, Ping-Chuan; Chen, Shi-Lu et al. (2008) Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase. Biochemistry 47:9497-504
Li, Yingchun; Raushel, Frank M (2007) Differentiation of chiral phosphorus enantiomers by P and H NMR spectroscopy using amino acid derivatives as chemical solvating agents. Tetrahedron Asymmetry 18:1391-1397
Ghanem, Eman; Li, Yingchun; Xu, Chengfu et al. (2007) Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX. Biochemistry 46:9032-40
Samples, Cynthia R; Raushel, Frank M; DeRose, Victoria J (2007) Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Biochemistry 46:3435-42

Showing the most recent 10 out of 16 publications