The broad, long-term objective of this research is to use a combination of NMR, crystallographic and quantum chemical methods to investigate the structure, function and inhibition of metalloproteins of interest as drug targets. The first specific aim is to use NMR and computational chemistry to devise novel inhibitors of HIV-1 reverse transcriptase catalyzed excision of AZT (azidothymidine), responsible for many cases of drug-resistant HIV/AIDS in the United States. This work will follow up on the recent discovery of a class of compounds, bisphosphonates, which block the ATP-dependent excision of AZT in both enzyme and cell-based assays, restoring drug sensitivity. The hypothesis to be tested is that the bisphosphonates bind to the Mg2+ site in RT, as does ATP, inhibiting the ATP - catalyzed excision process. Since there are no x-ray structures of these bound inhibitors, NMR will be used to determine bound drug conformations, plus quantum chemistry will be used to determine structure/activity relationships aimed at developing improved inhibitors.
The second aim i s to investigate 3 Mg2+-enzymes involved in isoprenoid biosynthesis, of importance in e.g. cell signaling and sterol biosynthesis: farnesyl diphosphate synthase (FPPS), isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IPPI) and deoxyxylulose-5-phosphate reductoisomerase (DXR). We will use NMR, crystallography and quantum chemistry to guide the development of novel bisphosphonate and diphosphate inhibitors of these metalloenzymes. FPPS and DXR are of interest in the context of the therapy of infectious diseases while FPPS and IPPI are of interest in the immunotherapy of certain cancers. The third and final aim is to investigate the effects of these inhibitors on FPPS, IPPI, DXR and other isoprene biosynthesis pathway enzymes in cells, using microarray techniques, together with targeted gene silencing using siRNA techniques. The objective here is to develop a better understanding of drug synergisms and mechanisms of action, at the cellular level. This work is of interest in the context of the development of anti-bacterial, anti-fungal, anti-protozoal and immunomodulator drugs. Overall, this project is aimed at developing novel inhibitors of metalloenzyme using NMR, crystallography and computational chemistry methods and in investigating the pharmacological effects of these drug candidates at the cellular level, using modern gene expression techniques.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM073216-29
Application #
7432624
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Wehrle, Janna P
Project Start
1992-04-01
Project End
2010-06-30
Budget Start
2008-07-01
Budget End
2010-06-30
Support Year
29
Fiscal Year
2008
Total Cost
$263,529
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Oldfield, Eric; Lin, Fu-Yang (2012) Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 51:1124-37
Oldfield, Eric (2010) Targeting isoprenoid biosynthesis for drug discovery: bench to bedside. Acc Chem Res 43:1216-26
Zhang, Yonghui; Cao, Rong; Yin, Fenglin et al. (2010) Lipophilic pyridinium bisphosphonates: potent gammadelta T cell stimulators. Angew Chem Int Ed Engl 49:1136-8
Wang, Weixue; Wang, Ke; Liu, Yi-Liang et al. (2010) Bioorganometallic mechanism of action, and inhibition, of IspH. Proc Natl Acad Sci U S A 107:4522-7
Wang, Ke; Wang, Weixue; No, Joo-Hwan et al. (2010) Inhibition of the Fe(4)S(4)-cluster-containing protein IspH (LytB): electron paramagnetic resonance, metallacycles, and mechanisms. J Am Chem Soc 132:6719-27
Zhang, Yonghui; Cao, Rong; Yin, Fenglin et al. (2009) Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation. J Am Chem Soc 131:5153-62
Song, Yongcheng; Liu, Chia-I; Lin, Fu-Yang et al. (2009) Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J Med Chem 52:3869-80
Song, Yongcheng; Lin, Fu-Yang; Yin, Fenglin et al. (2009) Phosphonosulfonates are potent, selective inhibitors of dehydrosqualene synthase and staphyloxanthin biosynthesis in Staphylococcus aureus. J Med Chem 52:976-88
Wylie, Benjamin J; Schwieters, Charles D; Oldfield, Eric et al. (2009) Protein structure refinement using 13C alpha chemical shift tensors. J Am Chem Soc 131:985-92
Sarikonda, Ghanashyam; Wang, Hong; Puan, Kia-Joo et al. (2008) Photoaffinity antigens for human gammadelta T cells. J Immunol 181:7738-50

Showing the most recent 10 out of 21 publications