The conversion of C-H bonds into new functional groups represents a powerful strategy for the synthesis and elaboration of organic molecules. Over the past 20 years, there has been tremendous progress in the development and application of C-H functionalization reactions in organic synthesis. However, despite this progress, selective C-H functionalization can only be achieved in the context of a relatively limited set of organic substrates and C-H sites. One class of substrates that has historically proven challenging for selective C-H functionalization is aliphatic amines. This proposal seeks to address this unmet need through the development of a series of predictable and selective C-H functionalization reactions of aliphatic amines, with a particular focus on saturated nitrogen heterocycles. The proposed efforts will deliver a suite of complementary synthetic methods for the oxidation of C(sp3)-H bonds at sites remote to the amine nitrogen. In each Specific Aim, a different type of metal catalyst will be employed, and a fundamentally different strategy will be used to control site selectivity. As such, the proposed methods will provide a variety of new synthetic disconnections for the construction and derivatization of aliphatic amine-based cores. The overall objective of Aim 1 is to develop Pd-catalyzed ligand-directed reactions for the transannular C-H functionalization of cyclic amines. The overall objective of Aim 2 is to develop metal-oxo/peroxo-catalyzed C(sp3)-H oxidation reactions of amines that proceed with high selectivity for sites remote to nitrogen. Finally, the overall objective of Aim 3 is to employ Pt- catalysis to achieve the sterically selective C-H oxidation of aliphatic amine substrates.

Public Health Relevance

The proposed work will develop new chemical reactions that directly convert carbon-hydrogen bonds in aliphatic amine substrates into more valuable functional groups. Aliphatic amines are extremely common in bioactive molecules (e.g., FDA approved pharmaceuticals, drug candidates, imaging agents, biological probes). Thus, the proposed reactions have the potential for major impact by providing more efficient and environmentally benign routes to therapeutic agents for the diagnosis and treatment of human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM073836-12
Application #
9247952
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Lees, Robert G
Project Start
2005-08-01
Project End
2020-03-31
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
12
Fiscal Year
2017
Total Cost
$264,690
Indirect Cost
$82,890
Name
University of Michigan Ann Arbor
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Malapit, Christian A; Bour, James R; Brigham, Conor E et al. (2018) Base-free nickel-catalysed decarbonylative Suzuki-Miyaura coupling of acid fluorides. Nature 563:100-104
Cabrera, Pablo J; Lee, Melissa; Sanford, Melanie S (2018) Second-Generation Palladium Catalyst System for Transannular C-H Functionalization of Azabicycloalkanes. J Am Chem Soc 140:5599-5606
Shrestha, Anuska; Lee, Melissa; Dunn, Anna L et al. (2018) Palladium-Catalyzed C-H Bond Acetoxylation via Electrochemical Oxidation. Org Lett 20:204-207
Ichiishi, Naoko; Malapit, Christian A; Wo?niak, ?ukasz et al. (2018) Palladium- and Nickel-Catalyzed Decarbonylative C-S Coupling to Convert Thioesters to Thioethers. Org Lett 20:44-47
Malapit, Christian A; Ichiishi, Naoko; Sanford, Melanie S (2017) Pd-Catalyzed Decarbonylative Cross-Couplings of Aroyl Chlorides. Org Lett 19:4142-4145
Lee, Melissa; Sanford, Melanie S (2017) Remote C(sp3)-H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Org Lett 19:572-575
Mbofana, Curren T; Chong, Eugene; Lawniczak, James et al. (2016) Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites. Org Lett 18:4258-61
Topczewski, Joseph J; Cabrera, Pablo J; Saper, Noam I et al. (2016) Palladium-catalysed transannular C-H functionalization of alicyclic amines. Nature 531:220-224
Mossine, Andrew V; Brooks, Allen F; Makaravage, Katarina J et al. (2015) Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids. Org Lett 17:5780-3
Lee, Melissa; Sanford, Melanie S (2015) Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines. J Am Chem Soc 137:12796-9

Showing the most recent 10 out of 50 publications