How enhancers and promoters communicate is one of the important questions in the field of eukaryotic gene regulation. Despite provocative models from textbooks and review articles, very little is genuinely known of the mechanism. We were the first lab to show a direct interaction between TFIID and Mediator co-activators, and demonstrate that this interaction was required for Pol II preinitiation complex assembly in vitro. Based on these studies, we hypothesize that the key interaction driving Pol II preinitiation complex assembly and function is activator-regulated interaction between Mediator at the enhancer and TFIID at the promoter. We will leverage the knowledge and biochemical/genomewide technologies acquired from studies over the last three funding cycles to comprehensively identify proteins forming the TFIID-Mediator interface in vitro and determine if these interactions are central to gene expression and promoter-enhancer looping in cells. Our studies will employ biochemical and biological assays developed to analyze how the murine embryonic stem cell activator Esrrb activates transcription in vivo in murine embryonic stem cells (mESCs) and in vitro in extracts. This system will serve as a model and focal point for understanding the TFIID-Mediator interface.
In Aim 1, we will identify the interface between Esrrb, Mediator and TFIID using crosslinking mass spectrometry (XL-MS). We will validate and further study these surfaces using protein-protein interaction assays and mutagenesis.
In Aim 2, we will identify the TFIID-Mediator co-activator surface in vivo by systematic RNAi knockdown of co-activator subunits, individually and then in pairwise combinations, followed by RNA-seq to identify overlapping effects. We will perform genomewide ChIP-seq of TFIID and Mediator under mock and knockdown conditions to probe effects and correlate with the results from Aim 1.
Aim 3 examines whether the TFIID-Mediator interface is necessary or not for promoter-enhancer looping in vivo using 4C. Our results will provide a detailed mechanism of eukaryotic gene activation using powerful state-of-the-art biochemical and biological approaches.

Public Health Relevance

Aberrant gene regulation is associated with many forms of cancer and other diseases. We will employ state-of-the-art biochemical and genomewide methodologies to understand the mechanisms involved in turning genes on and off with an emphasis on a core complex of proteins termed TFIID and Mediator, whose regulation in central to gene activity.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Carter, Anthony D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Gottesfeld, Joel M; Carey, Michael F (2018) Introduction to the Thematic Minireview Series: Chromatin and transcription. J Biol Chem 293:13775-13777
Sun, Fei; Chronis, Constantinos; Kronenberg, Michael et al. (2018) Promoter-Enhancer Communication Occurs Primarily within Insulated Neighborhoods. Mol Cell :
Huang, Chengyang; Su, Trent; Xue, Yong et al. (2017) Cbx3 maintains lineage specificity during neural differentiation. Genes Dev 31:241-246
Xue, Yong; Schmollinger, Stefan; Attar, Narsis et al. (2017) Endoplasmic reticulum-mitochondria junction is required for iron homeostasis. J Biol Chem 292:13197-13204
Xue, Yong; Pradhan, Suman K; Sun, Fei et al. (2017) Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol Cell 67:594-607.e4
Pradhan, Suman K; Su, Trent; Yen, Linda et al. (2016) EP400 Deposits H3.3 into Promoters and Enhancers during Gene Activation. Mol Cell 61:27-38
Xue, Yong; Van, Christopher; Pradhan, Suman K et al. (2015) The Ino80 complex prevents invasion of euchromatin into silent chromatin. Genes Dev 29:350-5
Sridharan, Rupa; Gonzales-Cope, Michelle; Chronis, Constantinos et al. (2013) Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1? in reprogramming to pluripotency. Nat Cell Biol 15:872-82
Chen, Xiao-Fen; Lehmann, Lynn; Lin, Justin J et al. (2012) Mediator and SAGA have distinct roles in Pol II preinitiation complex assembly and function. Cell Rep 2:1061-7
Lehmann, Lynn; Ferrari, Roberto; Vashisht, Ajay A et al. (2012) Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J Biol Chem 287:35784-94

Showing the most recent 10 out of 19 publications