The development of broadly useful and conceptually novel strategies for catalysis using high oxidation state transition metal complexes is proposed. In general, these reactions employ metal-oxo complexes, of rhenium and vanadium, as catalysts for a variety of organic transformations including reductions, substitution, additions and oxidations. Rhenium(V)-dioxo complexes can be employed as catalysts for chemoselective and enantioselective hydrosilylation of aldehydes, ketones and imines. This represents a reversal in the traditional role of this catalysts as oxidizing agents. The continued development of chiral versions of these rhenium(V)-oxo complexes for the enantioselective synthesis of alcohols and imines will be is proposed. More specifically, the unique ability of these complexes to enantio- and regioselectively reduce unsaturated imines will be exploited. Additionally, rhenium-oxo catalyzed addition of carbon (cyanide, allyl, trifluoromethyl) and metalloid (borane, stannane) nucleophiles is proposed. Metal-oxo catalyzed oxidations are also proposed. For example, studies on vanadium-catalyzed oxidative kinetic resolution and rhenium catalyzed enantioselective sulfoxidations are described. Additionally, novel rhenium-oxo catalyzed oxidative transformation (e.g. cleavage of olefins to imines) will be developed. Development of a number of new transformations that take advantage of the unique properties of metal-oxo complexes are proposed. Theses include unprecedented metal-oxo catalyzed de-racemization reactions, tandem oxidative cleavage/enantioselective additions and tandem rearrangements/enantioselective additions. ? ? ?

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Schwab, John M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Schools of Arts and Sciences
United States
Zip Code
Khrakovsky, Dimitri A; Tao, Chuanzhou; Johnson, Miles W et al. (2016) Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes. Angew Chem Int Ed Engl 55:6079-83
Zi, Weiwei; Toste, F Dean (2015) Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3-Diols through Intramolecular Hydroalkoxylation of Allenes. Angew Chem Int Ed Engl 54:14447-51
Shapiro, Nathan D; Rauniyar, Vivek; Hamilton, Gregory L et al. (2011) Asymmetric additions to dienes catalysed by a dithiophosphoric acid. Nature 470:245-9
La Pierre, Henry S; Arnold, John; Toste, F Dean (2011) Z-selective semihydrogenation of alkynes catalyzed by a cationic vanadium bisimido complex. Angew Chem Int Ed Engl 50:3900-3
Son, Sunghee; Toste, F Dean (2010) Non-oxidative vanadium-catalyzed C-O bond cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed Engl 49:3791-4
Gonzalez, Ana Z; Toste, F Dean (2010) Gold(I)-catalyzed enantioselective [4 + 2]-cycloaddition of allene-dienes. Org Lett 12:200-3
Nolin, Kristine A; Ahn, Richard W; Kobayashi, Yusuke et al. (2010) Enantioselective reduction of ketones and imines catalyzed by (CN-box)Re(V)-oxo complexes. Chemistry 16:9555-62
Uemura, Minoru; Watson, Iain D G; Katsukawa, Mikimoto et al. (2009) Gold(I)-catalyzed enantioselective synthesis of benzopyrans via rearrangement of allylic oxonium intermediates. J Am Chem Soc 131:3464-5
Sethofer, Steven G; Staben, Steven T; Hung, Olivia Y et al. (2008) Au(I)-catalyzed ring expanding cycloisomerizations: total synthesis of ventricosene. Org Lett 10:4315-8
Radosevich, Alexander T; Chan, Vincent S; Shih, Hui-Wen et al. (2008) Synthesis of (-)-octalactin a by a strategic vanadium-catalyzed oxidative kinetic resolution. Angew Chem Int Ed Engl 47:3755-8

Showing the most recent 10 out of 11 publications