PROJECT SIGNIFICANCE: Spindle orientation is critical during asymmetric cell division and is important to a wide range of developmental processes in systems ranging from yeast to man. The minus-end directed microtubule motor dynein plays a pivotal role in spindle orientation during asymmetric cell division in numerous organisms. Central to the role of dynein in spindle orientation is how dynein is anchored at the cortical membrane. This is not well understood in any system. OBJECTIVE/HYPOTHESIS: The goal of this proposal is to investigate how dynein interacts with cortical receptor proteins to mediate spindle orientation. The budding yeast provides an excellent model system for defining dynein-cortex interactions during spindle orientation because dynein only function in yeast is to position the mitotic spindle. Unlike many cell types where large numbers of astral microtubules interact with the cortex at many cortical sites for spindle orientation, in yeast, dynein exerts cortical pulling forces on a single cytoplasmic microtubule. Yeast is also the only system in which a candidate cortical receptor protein for dynein has been identified. This receptor, Num1, localizes to discrete patches at the cortex. My work supports a model in which dynein uses the microtubule plus end to reach the edge of the cell and off-load onto cortical patches composed of a Num1 receptor complex. Off-loaded dynein becomes anchored to generate pulling forces for spindle positioning.
SPECIFIC AIMS : (1) To test the off-loading model by directly imaging the process using time-lapse fluorescence microscopy. (2) To use biochemical and candidate gene strategies to identify proteins that bridge dynein at the plus end to Num1 patches, as well as proteins that are responsible for cortical patch assembly. (3) To test the function of Num1 patch formation and identify the determinants for patch assembly using mutant and deletion constructs of Num1;to use yeast mutants to probe the role of phospholipids in Num1 patch localization.

Public Health Relevance

TO PUBLIC HEALTH: Understanding the molecular mechanism of spindle positioning is highly significant because correct spindle orientation is critical for maintaining genomic stability and plays a role in stem cell differentiation and development in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM076094-05
Application #
8067801
Study Section
Nuclear Dynamics and Transport (NDT)
Program Officer
Gindhart, Joseph G
Project Start
2007-05-01
Project End
2013-04-30
Budget Start
2011-05-01
Budget End
2013-04-30
Support Year
5
Fiscal Year
2011
Total Cost
$365,272
Indirect Cost
Name
University of Massachusetts Amherst
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
153926712
City
Amherst
State
MA
Country
United States
Zip Code
01003
Omer, Safia; Greenberg, Samuel R; Lee, Wei-Lih (2018) Cortical dynein pulling mechanism is regulated by differentially targeted attachment molecule Num1. Elife 7:
Zhu, Yili; An, Xiaojing; Tomaszewski, Alexis et al. (2017) Microtubule cross-linking activity of She1 ensures spindle stability for spindle positioning. J Cell Biol :
Markus, Steven M; Omer, Safia; Baranowski, Kaitlyn et al. (2015) Improved Plasmids for Fluorescent Protein Tagging of Microtubules in Saccharomyces cerevisiae. Traffic 16:773-786
Bezanilla, Magdalena; Gladfelter, Amy S; Kovar, David R et al. (2015) Cytoskeletal dynamics: a view from the membrane. J Cell Biol 209:329-37
Zhu, Yili; Lee, Wei-Lih (2014) The role of +TIPs in directional tip expansion. Mol Microbiol 94:486-9
Wadsworth, Patricia; Lee, Wei-Lih (2013) Microtubule motors: doin' it without dynactin. Curr Biol 23:R563-5
Collins, Elizabeth S; Balchand, Sai Keshavan; Faraci, Jessica L et al. (2012) Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol Biol Cell 23:3380-90
Markus, Steven M; Kalutkiewicz, Katelyn A; Lee, Wei-Lih (2012) Astral microtubule asymmetry provides directional cues for spindle positioning in budding yeast. Exp Cell Res 318:1400-6
Markus, Steven M; Kalutkiewicz, Katelyn A; Lee, Wei-Lih (2012) She1-mediated inhibition of dynein motility along astral microtubules promotes polarized spindle movements. Curr Biol 22:2221-30
Tang, Xianying; Germain, Bryan St; Lee, Wei-Lih (2012) A novel patch assembly domain in Num1 mediates dynein anchoring at the cortex during spindle positioning. J Cell Biol 196:743-56

Showing the most recent 10 out of 19 publications