Central biological functions such as replication, transcription, mRNA splicing, transport, and signaling are performed by molecular machines. Standard structural techniques fail to deal with the large size of molecular complexes and provide minimal dynamic information, while fluorescence-based techniques are limited by the photo-lability and complex photophysics of conventional organic dyes. We have found that pairs of nanoparticles can be used to monitor distances via the distance-dependence of their plasmon coupling. These 'plasmon rulers'reveal the time dynamics of processes such as single DNA hybridization events and the interaction of single enzymes with their DNA substrates. Suitably coated and functionalized plasmon rulers have recently enabled single-molecule studies of enzymatic DNA bending and cleavage with millisecond and nanometer resolution. The plasmon rulers did not aggregate or perturb enzyme kinetics and allowed simultaneous observation of about 5000 individual DNA substrates. The accessible distance range of plasmon rulers is 0-80nm and their photostability makes it possible to monitor single biomolecules for days. Our proposed research has three aims. First, we will optimize the optical properties of the plasmon rulers, refine nanoparticle passivation procedures, and develop improved microscopies for monitoring plasmon rulers. These technical refinements will allow researchers without specialized knowledge of plasmonics and nanoparticles to use plasmon rulers in their research. Second, we will use plasmon rulers to investigate the structural dynamics, substrate requirements, and mechanochemistry of Dicer, a central component of the RNA-induced silencing complex (RISC). RNAi is a widespread mechanism of gene regulation via post-transcriptional silencing of specific genes. RISC-assembly and -function typifies cellular processes not easily amenable to analysis by conventional methods such as FRET. Third, as a first step towards using plasmon rulers in vivo, we will establish reliable methods to deliver plasmon rulers to cells, prevent plasmon ruler aggregation once in the cytoplasm, and evaluate their possible cytotoxicity. Together, the proposed research will give biologists a new tool for monitoring single molecular machines with high temporal and spatial resolution and for nearly unlimited times. By developing optical probes with extreme brightness and photostability, new specific and sensitive diagnostic tools will become feasible. The single-molecule studies of RNA interference will help establish its basic mechanochemistry and may enable the development of genome-wide scans for microRNAs. Finally, the single-molecule studies of RNA interference may also facilitate the design of efficient short interfering RNA (siRNA) sequences with minimal off-target effects for therapeutic use.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM077856-02
Application #
7617083
Study Section
Microscopic Imaging Study Section (MI)
Program Officer
Lewis, Catherine D
Project Start
2008-05-01
Project End
2013-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
2
Fiscal Year
2009
Total Cost
$268,439
Indirect Cost
Name
University of California Berkeley
Department
Physics
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Draper, Will; Liphardt, Jan (2017) Origins of chemoreceptor curvature sorting in Escherichia coli. Nat Commun 8:14838
Lowe, Alan R; Tang, Jeffrey H; Yassif, Jaime et al. (2015) Importin-? modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife 4:
Shi, Quanming; Ghosh, Rajarshi P; Engelke, Hanna et al. (2014) Rapid disorganization of mechanically interacting systems of mammary acini. Proc Natl Acad Sci U S A 111:658-63
Llorente-Garcia, Isabel; Lenn, Tchern; Erhardt, Heiko et al. (2014) Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta 1837:811-24
McEvoy, Ann L; Hoi, Hiofan; Bates, Mark et al. (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One 7:e51314
Lowe, Alan R; Siegel, Jake J; Kalab, Petr et al. (2010) Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467:600-3
Walter, Jessica M; Greenfield, Derek; Liphardt, Jan (2010) Potential of light-harvesting proton pumps for bioenergy applications. Curr Opin Biotechnol 21:265-70
Greenfield, Derek; McEvoy, Ann L; Shroff, Hari et al. (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7:e1000137
Jun, Young-wook; Sheikholeslami, Sassan; Hostetter, Daniel R et al. (2009) Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proc Natl Acad Sci U S A 106:17735-40