The association between Bcl-2 and cancer has been known for 20 years. But the biochemical mechanisms to explain why Bcl-2, found at translocation breakpoints in follicular lymphomas, why elevated Bcl-xL expression in many tumor types, and why herpesviruses that encode Bcl-2 homologues cause cancer, remains unknown. The field has focused considerable effort to understand the complex interactions between anti-death (Bcl-2 and Bcl-xL) and pro-death (Bax and Bak) family proteins, and their mechanisms of action after cells have received a stimulus that induced apoptosis. The work in our lab has forced us to think in another direction, to pursue the basic biochemical functions of Bcl-2 family proteins that function prior to receipt of a death stimulus, and that we predict are shared between both anti- and pro-death family members. These 'day-jobs' are also predicted to explain the anti-death functions of human Bcl-2 proteins in a remarkable diverisity of species including mammals, plants and fungi, Therefore, we propose to apply the new tools available for yeast to study the 'core1 functions of Bcl-2 family proteins. First, we seek to identify genes that regulate programmed cell death in yeast. Several different death stimuli, including viruses, heat shock and metabolic stress, will be applied to the complete library of yeast knockout strains under conditions that distinguish anti- and pro-death genes. Factors that are common or unique to specific pathways will be distinguished. These pathways will be ordered and candidate yeast regulators of cell death already on hand will be further investigated to determine the connection between their ability to regulate mitochondria! morphology and function. Finally, yeast will be probed to identifiy those genes that are required for human Bcl-2 and Bcl-xL to inhibit cell death in yeast. We expect that these newly unidentified yeast factors will be involved in the maintenance, biogenesis and degradation of mitochondria, and in close proximity to the regulation of bioenergetics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM077875-02S1
Application #
7492396
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Zatz, Marion M
Project Start
2006-05-01
Project End
2010-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
2
Fiscal Year
2007
Total Cost
$77,364
Indirect Cost
Name
Johns Hopkins University
Department
Microbiology/Immun/Virology
Type
Schools of Public Health
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Chen, Xianghui; Wang, Guiqin; Zhang, Yu et al. (2018) Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genet 14:e1007592
Aouacheria, Abdel; Cunningham, Kyle W; Hardwick, J Marie et al. (2018) Comment on ""Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death"". Science 360:
Hardwick, J Marie (2018) Do Fungi Undergo Apoptosis-Like Programmed Cell Death? MBio 9:
Metz, Kyle A; Teng, Xinchen; Coppens, Isabelle et al. (2018) KCTD7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann Neurol 84:766-780
Aouacheria, Abdel; Baghdiguian, Stephen; Lamb, Heather M et al. (2017) Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins. Neurochem Int 109:141-161
Teng, Xinchen; Hardwick, J Marie (2015) Cell death in genome evolution. Semin Cell Dev Biol 39:3-11
Aouacheria, Abdel; Combet, Christophe; Tompa, Peter et al. (2015) Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem Sci 40:736-748
Teng, Xinchen; Hardwick, J Marie (2013) Quantification of genetically controlled cell death in budding yeast. Methods Mol Biol 1004:161-70
Teng, Xinchen; Dayhoff-Brannigan, Margaret; Cheng, Wen-Chih et al. (2013) Genome-wide consequences of deleting any single gene. Mol Cell 52:485-94
Aouacheria, Abdel; Rech de Laval, Valentine; Combet, Christophe et al. (2013) Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol 23:103-11

Showing the most recent 10 out of 23 publications