Fidelity of copying of the genome during DNA replication is maintained at a robust level by a poorly understood network of intersecting pathways. Specific mechanisms by which these pathways protect the genome remain uncharacterized due to the complexity of the underlying processes at the replication fork and their regulation. A major challenge is to understand if and how the replication apparatus coordinates the genome maintenance machineries. Recently, we have used global genetic interaction screens (SGA) and have defined an elaborate network of replication, repair, and regulatory (checkpoint and cell cycle) genes that we propose preserves the integrity of the lagging strand at the replication fork. DNA polymerase delta, FEN1 nuclease, and the essential replication helicase/nuclease Dna2 are key hubs in this network of Okazaki fragment synthesis and processing (OFP) enzymes, as are the Sgs1, Rrm3, Pif1, and Srs2 helicases. The pathways in the network define major avenues for guarding the genome and have implications for understanding of diseases such as cancer and aging that may derive from genome instability. Two major specific insights have been gained from analysis of the network and dictate our new directions: (1) We have found that the requirement for Dna2 protein for viability in yeast can be bypassed by deletion of another helicase, Pif1. Genetic evidence further suggests strong interaction of both Dna2 and Pif1 with DNA polymerase delta. We will probe the contribution of Pif1 to accurate lagging strand replication, using biochemical reconstitution, emphasizing the contribution of Pif1 to the well-characterized reactions of Dna2, FEN1, and pol delta on model substrates mimicking OFP intermediates. (2) We have found that deletion of DNA2 suppresses the excessive telomere elongation observed in pif1 mutants, adding to significant previous evidence that Dna2 functions at telomeres. We will study lagging strand synthesis on telomeric DNAs as well as interaction of Dna2 with various G-quadruplex Structures that may occur at telomeres (and elsewhere in the genome). Additional possible roles for Dna2 at telomeres will be tested, such as a role in recruiting telomerase and in degrading uncapped telomeres. Telomere length in dna2 mutants will be examined and compared with length in other mutants affecting telomere homeostasis. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM078666-01A3
Application #
7149439
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Dearolf, Charles R
Project Start
2006-09-20
Project End
2010-08-31
Budget Start
2006-09-20
Budget End
2007-08-31
Support Year
1
Fiscal Year
2006
Total Cost
$292,682
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Martínez, Thomas F; Phillips, John W; Karanja, Kenneth K et al. (2014) Replication stress by Py-Im polyamides induces a non-canonical ATR-dependent checkpoint response. Nucleic Acids Res 42:11546-59
Budd, Martin E; Campbell, Judith L (2013) Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 288:29414-29
Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L et al. (2012) Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1. Nucleic Acids Res 40:6774-86
Duxin, Julien P; Moore, Hayley R; Sidorova, Julia et al. (2012) Okazaki fragment processing-independent role for human Dna2 enzyme during DNA replication. J Biol Chem 287:21980-91
Fortini, Barbara K; Pokharel, Subhash; Polaczek, Piotr et al. (2011) Characterization of the endonuclease and ATP-dependent flap endo/exonuclease of Dna2. J Biol Chem 286:23763-70
Nimonkar, Amitabh V; Genschel, Jochen; Kinoshita, Eri et al. (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350-62
Wawrousek, Karen E; Fortini, Barbara K; Polaczek, Piotr et al. (2010) Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle 9:1156-66
Cejka, Petr; Cannavo, Elda; Polaczek, Piotr et al. (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112-6
Pike, Jason E; Henry, Ryan A; Burgers, Peter M J et al. (2010) An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. J Biol Chem 285:41712-23
Jaszczur, Malgorzata; Rudzka, Justyna; Kraszewska, Joanna et al. (2009) Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res 669:27-35

Showing the most recent 10 out of 11 publications