RNA is an important target for the design of small molecule therapeutics and probes of function. It is an underutilized target, however, because of the limited information available about how RNA motifs interact with small molecules. This proposal describes studies to identify RNA motif-small molecule partners and investigate important features in both the RNA and small molecule that govern molecular recognition. The RNA motifs used are small internal and hairpin loops that are commonly found in biologically important RNAs such as pre- microRNAs, underexploited and important RNA drug targets with secondary structures similar to our RNA motifs and no known tertiary structure. Two synergistic methods are used to enable parallel probing of features in the RNA and the small molecule. The first method, 2D Combinatorial Screening (2DCS), screens two libraries simultaneously (an array-immobilized small molecule library and an RNA library) to identify RNA motif-small molecule partners. RNAs are harvested directly off the array from ligand-functionalized positions, cloned, and sequenced. Selected RNAs and RNA motif-small molecule complexes can be studied by NMR and optical melting experiments to interrogate their structures, flexibilities, and thermodynamic stabilities. The second method, Structure Activity Relationships Through Sequencing (StARTS), assigns relative binding affinities from the output of 2DCS via the occurrence of RNA loops in sequencing data. Multiple selected sequences are ligated together and cloned, yielding more sequence data per single sequencing reaction. If information about RNA-small molecule interactions were available, an RNA target's secondary structure could be searched for one or several motifs to which a small molecule partner was identified, and the small molecule """"""""modules"""""""" custom-linked to accommodate each site in the target RNA. This may eliminate the need to subject each new RNA target to a high throughput screening assay.
The specific aims for this study are: 1.) Characterize the molecular recognition of 6'-N-5-hexynoate kanamycin A by internal loops with AC pairs, the consensus loop determined from a previously completely selection. AC loops are present as mutations in tRNAs that cause disease. 2.) Identify and study the RNA internal loops selected to bind members of an aminoglycoside library. 3.) Use StARTS and 2DCS to streamline identification and statistical analysis of the internal loops that bind 6'-N-5-hexynoate neamine. 4.) Expand the results in Aims 2 and 3 to identify RNA hairpin loop-aminoglycoside interactions. 5.) Identify interactions between a peptoid library and RNA internal loops and hairpin loops via StARTS and 2DCS.

Public Health Relevance

RNA is an important biomolecule that is associated with diseased states, however, very few drugs elicit their effects by interacting with RNA. The goal of the proposed research is to understand how drug-like molecules interact with RNA to design therapeutics or probes of RNA function.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM079235-02
Application #
7660372
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Preusch, Peter C
Project Start
2008-08-01
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
2
Fiscal Year
2009
Total Cost
$295,132
Indirect Cost
Name
State University of New York at Buffalo
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Park, HaJeung; González, Àlex L; Yildirim, Ilyas et al. (2015) Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10). Biochemistry 54:3851-9
Colak, Dilek; Zaninovic, Nikica; Cohen, Michael S et al. (2014) Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 343:1002-5
Hoskins, Jason W; Ofori, Leslie O; Chen, Catherine Z et al. (2014) Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Res 42:6591-602
Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung et al. (2014) Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem Biol 9:538-550
Strack, Rita L; Disney, Matthew D; Jaffrey, Samie R (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10:1219-24
Guan, Lirui; Disney, Matthew D (2013) Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions. Angew Chem Int Ed Engl 52:10010-3
Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi et al. (2013) Features of modularly assembled compounds that impart bioactivity against an RNA target. ACS Chem Biol 8:2312-21
Childs-Disney, Jessica L; Stepniak-Konieczna, Ewa; Tran, Tuan et al. (2013) Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 4:2044
Disney, Matthew D (2013) Rational design of chemical genetic probes of RNA function and lead therapeutics targeting repeating transcripts. Drug Discov Today 18:1228-36
Sellier, Chantal; Freyermuth, Fernande; Tabet, Ricardos et al. (2013) Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 3:869-80

Showing the most recent 10 out of 41 publications