Modern molecular medicine encompasses the utilization of molecular and cell biology techniques to the study of human disease in order to produce a new understanding of the molecular basis of biology and diseases. Implementation of this new understanding will create the basis for novel diagnostics and therapeutics as well as new prevention and intervention strategies in many public health problems. Molecular level understanding of diseases will have to rely on molecular probes to recognize the molecules of interest. Out of the many potential molecular probes, a new class of designer nucleic acid molecules (called aptamers) holds great potential in elucidating molecular mechanisms of diseases and in being used for the molecular recognition in bioanalysis of many important biomolecules. Aptamers have their own advantages in low molecular weight, easy and reproducible synthesis, easy to use and fast tissue penetration. They can be selected for single proteins and even small molecules such as amino acids. Recently, we have developed a novel cell based aptamer selection (Cell-SELEX) technique to generate a group of aptamers for the specific recognition of individual cells without prior knowledge of the potential biomarkers for the cells. The subtraction selection process is simple, straightforward and reproducible. The aptamers can bind to target cells with Kd in the nM to pM range. These newly selected molecular probes will provide us unique opportunities in disease early diagnosis, targeted drug therapy and biomarker discovery. To this end, we will pursue the selection of aptamers for small cell lung cancer, leukemia cells and other cells such as Pancreatic Beta cells and liver cancer cells, each of which currently possesses great challenges to conventional means of detection, biomarker development, and targeted therapy. Once the aptamers for these cell lines have been selected, each aptamer will be enabled by the bioanalytical tools (biosensors, molecular imaging and molecular engineering) well developed in our labs before applied to different aims in medical research. We will concentrate on four potential applications in exploring the wide utility of the aptamers directly selected from cells: cancer early diagnosis with small cell lung cancer, targeted therapy with aptamer conjugated drugs, biomarker discovery and molecular profiling. Once completed this proposal will not only show that cell based aptamer selection can be widely applicable to various types of cells to generate effective molecular probes for specific recognition, but we will be able to convincingly demonstrate the advantages of using cell based aptamers for medical and technical difficulties that current methodologies fail to adequately address

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM079359-03
Application #
7579918
Study Section
Enabling Bioanalytical and Biophysical Technologies Study Section (EBT)
Program Officer
Edmonds, Charles G
Project Start
2007-03-01
Project End
2011-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
3
Fiscal Year
2009
Total Cost
$243,723
Indirect Cost
Name
University of Florida
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Li, Jin; Qiu, Liping; Xie, Sitao et al. (2018) Engineering a customized nanodrug delivery system at the cellular level for targeted cancer therapy. Sci China Chem 61:497-504
Pang, Xuehui; Cui, Cheng; Su, Minhui et al. (2018) Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy 46:101-109
He, Lei; Lu, Danqing; Liang, Hao et al. (2018) mRNA-Initiated, Three-Dimensional DNA Amplifier Able to Function inside Living Cells. J Am Chem Soc 140:258-263
Wu, Yuan; Zhang, Liqin; Cui, Cheng et al. (2018) Enhanced Targeted Gene Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. J Am Chem Soc 140:2-5
Pang, Xuehui; Cui, Cheng; Wan, Shuo et al. (2018) Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review. Cancers (Basel) 10:
He, Lei; Lu, Dan-Qing; Liang, Hao et al. (2017) Fluorescence Resonance Energy Transfer-Based DNA Tetrahedron Nanotweezer for Highly Reliable Detection of Tumor-Related mRNA in Living Cells. ACS Nano 11:4060-4066
Peng, Yong Bo; Zhao, Zi Long; Liu, Teng et al. (2017) A Multi-Mitochondrial Anticancer Agent that Selectively Kills Cancer Cells and Overcomes Drug Resistance. ChemMedChem 12:250-256
Wan, Shuo; Zhang, Liqin; Wang, Sai et al. (2017) Molecular Recognition-Based DNA Nanoassemblies on the Surfaces of Nanosized Exosomes. J Am Chem Soc 139:5289-5292
Kuai, Hailan; Zhao, Zilong; Mo, Liuting et al. (2017) Circular Bivalent Aptamers Enable in Vivo Stability and Recognition. J Am Chem Soc 139:9128-9131
Wang, Guodong; Liu, Jun; Chen, Ke et al. (2017) Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Sci Rep 7:7179

Showing the most recent 10 out of 177 publications