A major goal of my laboratory is to understand how cytoskeletal polymers establish long-range order in the cytoplasm and help convert a rowdy mob of macromolecules into a living cell. Initially, we focused on actin filament networks that drive migration of eukaryotic cells but, in 2004, our interests expanded to include bacterial polymers (Garner, 2004). Until recently, cytoskeletal polymers like actin filaments and microtubules were thought to be eukaryotic innovations, not present in bacteria. Recent work, however, has identified a number of cytoskeletal systems in bacteria, including actin-like proteins required to maintain cell shape (Jones, 2001);transport cargo through cytoplasm (Moller-Jensen, 2003;Kruse, 2003);and organize intracellular compartments (Komeili, 2006). My laboratory has focused particular attention on the actin-like protein, ParM, which forms dynamic filaments that push cargo to opposite poles of rod-shaped bacteria. The ParM gene is part of a partitioning locus (the par operon) found on many low-copy plasmids (e.g. clinically important R1 and R100 drug-resistance plasmids). To ensure plasmid inheritance the par operon constructs a DNA-segregating spindle from three components: (1) a stretch of centromeric DNA called parC (Dam, 1994);(2) a repressor protein, ParR, that binds the parC locus (van den Ent, 2002);and (3) the actin-like protein ParM. The ParR/parC complex harnesses the energy of ParM polymerization to produce forces that push pairs of plasmids in opposite directions through the cytoplasm (Moller-Jensen, 2002;Moller-Jensen, 2003). We previously characterized the assembly dynamics of ParM filaments (Garner, 2004) and reconstituted ParM-based DNA segregation in vitro using purified components (Garner, 2007). The goal of the present proposal is to understand ParM-mediated plasmid movement in molecular detail. We pursue these studies for several reasons, including: (1) understanding ParM-dependent DNA segregation provides insight into related systems that work to organize prokaryotic cytoplasm. (2) ParM filaments have a simpler architecture than microtubules, making them the best system for studying the molecular basis of dynamic instability. (3) Understanding mechanisms that maintain drug resistance plasmids in bacterial populations can help us deal with the emergence of clinical drug resistance. We will perform quantitative studies at three size scales: (i) single molecule and bulk biochemical studies;(ii) biophysical and microscopical studies of reconstituted ParM spindles;and (iii) cell biological studies of ParM in living cells.

Public Health Relevance

Bacteria are not simply disorganized bags of protein and DNA: many large molecules and complex intracellular structures must be moved through the cytoplasm and properly positioned. In this project we work to understand how large pieces of DNA that confer multi-drug, antibiotic resistance to enteric pathogens are moved to opposite ends of a bacterium so that both they can be inherited by both daughter cells after cell division.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM079556-07
Application #
8641381
Study Section
Special Emphasis Panel (ZRG1-GGG-T (02))
Program Officer
Deatherage, James F
Project Start
2006-09-25
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
7
Fiscal Year
2014
Total Cost
$231,101
Indirect Cost
$72,871
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Belin, Brittany J; Lee, Terri; Mullins, R Dyche (2015) DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected]. Elife 4:e07735
Petek, Natalie A; Mullins, R Dyche (2014) Bacterial actin-like proteins: purification and characterization of self-assembly properties. Methods Enzymol 540:19-34
Belin, Brittany J; Goins, Lauren M; Mullins, R Dyche (2014) Comparative analysis of tools for live cell imaging of actin network architecture. Bioarchitecture 4:189-202
Polka, Jessica K; Kollman, Justin M; Mullins, R Dyche (2014) Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling. Proc Natl Acad Sci U S A 111:2176-81
Mullins, R Dyche; Hansen, Scott D (2013) In vitro studies of actin filament and network dynamics. Curr Opin Cell Biol 25:6-13
Vale, Ronald D; DeRisi, Joseph; Phillips, Rob et al. (2012) Graduate education. Interdisciplinary graduate training in teaching labs. Science 338:1542-3
Polka, Jessica K; Kollman, Justin M; Agard, David A et al. (2009) The structure and assembly dynamics of plasmid actin AlfA imply a novel mechanism of DNA segregation. J Bacteriol 191:6219-30
Choi, Charina L; Claridge, Shelley A; Garner, Ethan C et al. (2008) Protein-nanocrystal conjugates support a single filament polymerization model in R1 plasmid segregation. J Biol Chem 283:28081-6