Molecular mechanisms initiating cell migrations Project Summary/Abstract The process by which extracellular signals act through receptors at the plasma membrane to influence cell function is a fundamental requirement for life. Cytoskeletal elements, including branched actin, transmit signals throughout the cell. When branched actin is not properly polarized this can result in serious health problems like defective neuronal development or cancer metastases. We study how the actin cytoskeleton interprets extracellular signals to carry out polarized functions, including polarized cell migrations and polarized intracellular trafficking. We established a genetically amenable system in which signaling to specific tissues can be analyzed. Our system also identifies the relevant signals that promote specific developmental processes, uncovers novel components contributing to the propagation of the signal, and uses live imaging to provide insights into the cell biology controlled by the signals. Previously we identified and characterized three signals that pattern membrane recruitment of the GTPase Rac1/CED-10, which in turn recruit the branched actin regulator WAVE/Scar to regulate the dynamics of F-actin during a cell migration. Now we are ready to address: 1) How does branched actin promote the Cadherin trafficking that sets up proper apical/basal polarity? 2) Which Rac GEF(s) specifically convert signals received by the epidermis into epidermal motility cues? 3) How does branched-actin-dependent adhesion support tissue- tissue movements? Clinical relevance: The human homolog of one of the genes we study in C. elegans, WAVE3, is considered a biomarker for high grade, triple negative breast cancer (Kulkarni et al., 2012) and is associated with invasive prostate and colon cancers (Fernando et al., 2010; Zhang et al., 2012). Understanding the signals that regulate actin dynamics through the WAVE/Scar complex during cell migrations will suggest new biomarkers for altered actin regulation in human disease.

Public Health Relevance

/ Relevance of the Project to Public Health The regulators of branched actin are often mutated in various cancers and in diseases of neural development. These studies use a model organism, C. elegans, to address how branched actin is regulated for healthy development of properly polarized tissues. Therefore these studies will inform the causes of cancer and of neuronal developmental disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM081670-10A1
Application #
10072777
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Xu, Jianhua
Project Start
2009-07-15
Project End
2024-06-30
Budget Start
2020-09-01
Budget End
2021-06-30
Support Year
10
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Rbhs-Robert Wood Johnson Medical School
Department
Pathology
Type
Schools of Medicine
DUNS #
078795875
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Sasidharan, Shashikala; Borinskaya, Sofya; Patel, Falshruti et al. (2018) WAVE regulates Cadherin junction assembly and turnover during epithelial polarization. Dev Biol 434:133-148
Soto, Martha C (2017) Sequential Rosettes Drive C. elegans Ventral Nerve Cord Assembly. Dev Cell 41:121-122
Kim, Soyoung; Ishidate, Takao; Sharma, Rita et al. (2013) Wnt and CDK-1 regulate cortical release of WRM-1/ýý-catenin to control cell division orientation in early Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 110:E918-27
Patel, Falshruti B; Soto, Martha C (2013) WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia. Dev Biol 377:319-32
Bernadskaya, Yelena Y; Wallace, Andre; Nguyen, Jillian et al. (2012) UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph polarize F-actin during embryonic morphogenesis by regulating the WAVE/SCAR actin nucleation complex. PLoS Genet 8:e1002863
Xiong, Huajiang; Mohler, William A; Soto, Martha C (2011) The branched actin nucleator Arp2/3 promotes nuclear migrations and cell polarity in the C. elegans zygote. Dev Biol 357:356-69
Bernadskaya, Yelena Y; Patel, Falshruti B; Hsu, Hsiao-Ting et al. (2011) Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell 22:2886-99