Many cells in the human body are quiescent;that is, they have temporarily stopped dividing but retain the capacity to divide when conditions are suitable, for instance, when the organism must grow or a damaged tissue must be repaired. Although quiescence is a common state for many somatic cells, including stem cells, we know remarkably little about the regulation of cellular quiescence, the changes that cells undergo upon becoming quiescent, and what quiescence looks like in the body. We demonstrated that quiescence is an active and evolving state characterized by extensive changes in gene expression patterns. We hypothesized that microRNAs are involved in regulating the large number of gene expression changes observed with quiescence. We identified specific microRNAs up- and down-regulated with quiescence. miR-31 is downregulated with quiescence and is upregulated in colon and pancreatic cancer, especially late stage tumors. We have shown that overexpression of miR-31 results in a faster and more robust cell cycle entry from quiescence. We propose here to identify miR-31 targets and define the mechanisms by which it affects quiescence. We also propose to define the sequences within the miR-31 promoter responsible for its downregulation with quiescence. Only a small number of molecules can hasten cell cycle entry from quiescence, including myc, E2F and cyclin E. We anticipate that elucidating the mechanisms by which miR-31 promotes proliferation will elucidate an important new signaling pathway.

Public Health Relevance

Many common diseases likely result from failures of quiescence;that is, an inability of cells to temporarily stop dividing. These include developmental abnormalities, tumors, fibrosis, and ulcers. The ability to reenter the cell cycle after quiescence is a critical attribute of stem cells, and its decline likely contributes to aging. We propose here to characterize the role of one specific signaling pathway central to quiescence, and expect that the mechanisms identified will provide important insights into a wide range of medical conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM081686-03
Application #
7876750
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Maas, Stefan
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
3
Fiscal Year
2010
Total Cost
$277,727
Indirect Cost
Name
Princeton University
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Mitra, Mithun; Ho, Linda D; Coller, Hilary A (2018) An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods Mol Biol 1686:27-47
Lee, Ha Neul; Mitra, Mithun; Bosompra, Oye et al. (2018) RECK isoforms have opposing effects on cell migration. Mol Biol Cell 29:1825-1838
Mitra, Mithun; Johnson, Elizabeth L; Swamy, Vinay S et al. (2018) Alternative polyadenylation factors link cell cycle to migration. Genome Biol 19:176
Jelinek, David; Flores, Aimee; Uebelhoer, Melanie et al. (2018) Mapping Metabolism: Monitoring Lactate Dehydrogenase Activity Directly in Tissue. J Vis Exp :
Mitra, Mithun; Lee, Ha Neul; Coller, Hilary A (2018) Determining Genome-wide Transcript Decay Rates in Proliferating and Quiescent Human Fibroblasts. J Vis Exp :
Johnson, Elizabeth L; Robinson, David G; Coller, Hilary A (2017) Widespread changes in mRNA stability contribute to quiescence-specific gene expression patterns in a fibroblast model of quiescence. BMC Genomics 18:123
Flores, Aimee; Schell, John; Krall, Abigail S et al. (2017) Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol 19:1017-1026
Mitra, Mithun; Johnson, Elizabeth L; Coller, Hilary A (2015) Alternative polyadenylation can regulate post-translational membrane localization. Trends Cell Mol Biol 10:37-47
Corney, David C; Coller, Hilary A (2014) On form and function: does chromatin packing regulate the cell cycle? Physiol Genomics 46:191-4
Jiang, Peng; Singh, Mona; Coller, Hilary A (2013) Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in Transcript Decay. PLoS Comput Biol 9:e1003075

Showing the most recent 10 out of 21 publications