Calcium (Ca2+) is a ubiquitous intracellular signal, which is responsible for controlling numerous cellular processes. This proposal focuses on understanding of Ca2+-homeostasis regulation using the power of C. elegans molecular genetics. This proposal is directed toward an investigation of functions and mechanisms of the intercellular Ca +-wave propagation and the store-operated Ca2+ (SOC) channels, which are part of the inositol 1,4,5-trisphosphate (IPS)-dependent pathway. The intercellular Ca2+-wave propagation is observed in a variety of cell types in many different species. It has been proposed that the intercellular Ca2+ waves function as synchronizing cellular activities in a particular organ. We first observed the intercellular Ca2+-wave propagation in C. elegans intestine, but its function is not known at all. Since intercellular Ca2+-wave propagation is a widely observed biological phenomena, this can be an important model system to investigate its mechanism and function using genetics. The SOC channels have an important function for Ca2+ uptake from the extracellular solution upon depletion of intracellular Ca2+ stores. It is speculated that the SOC influx has an important function for neural signaling and the pathogenesis of some neurodegenerative diseases: SOC influx may play an important role in the early development of Alzheimer's disease. Despite the biological and clinical importance of the SOC channels, their molecular identity is highly controversial. We will test the hypothesis that any transient receptor potential channels are responsible for the SOC activity in the C. elegans intestine. To study Ca2+ homeostasis, we developed a unique assay system by combining genetic, Ca2+-imaging, and electrophysiological approaches. This uniqueness of the system could contribute to revealing new aspects in the regulatory mechanisms of Ca2+ homeostasis, which were not able to be addressed well in other systems. Using this assay system, we will address the following three issues 1) investigating the function of the intercellular Ca2+-wave propagation, 2) identifying the store-operated Ca2+ channels using reverse genetics, and 3) isolation of mutations that affect Ca2+ homeostasis using forward genetics. The second and third aims will complement each other to identify important molecules for regulation of Ca2+ homeostasis. Completion of this project will provide new insights into human disorders that are caused by abnormal Ca2+ homeostasis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM082133-05
Application #
8035420
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Chin, Jean
Project Start
2007-03-01
Project End
2013-02-28
Budget Start
2011-03-01
Budget End
2013-02-28
Support Year
5
Fiscal Year
2011
Total Cost
$281,191
Indirect Cost
Name
Northwestern University at Chicago
Department
Pharmacology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Yamashita, Megumi; Somasundaram, Agila; Prakriya, Murali (2011) Competitive modulation of Ca2+ release-activated Ca2+ channel gating by STIM1 and 2-aminoethyldiphenyl borate. J Biol Chem 286:9429-42
Hobbs, Ryan P; Amargo, Evangeline V; Somasundaram, Agila et al. (2011) The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling. FASEB J 25:990-1001
Teramoto, Takayuki; Sternick, Laura A; Kage-Nakadai, Eriko et al. (2010) Magnesium excretion in C. elegans requires the activity of the GTL-2 TRPM channel. PLoS One 5:e9589
McCarl, Christie-Ann; Khalil, Sara; Ma, Jian et al. (2010) Store-operated Ca2+ entry through ORAI1 is critical for T cell-mediated autoimmunity and allograft rejection. J Immunol 185:5845-58
Yamashita, Masahiro; Iwasaki, Kouichi; Doi, Motomichi (2009) The non-neuronal syntaxin SYN-1 regulates defecation behavior and neural activity in C. elegans through interaction with the Munc13-like protein AEX-1. Biochem Biophys Res Commun 378:404-8
Doi, Motomichi; Iwasaki, Kouichi (2008) Na+/K+ ATPase regulates the expression and localization of acetylcholine receptors in a pump activity-independent manner. Mol Cell Neurosci 38:548-58