Rabs constitute the largest branch of the Ras GTPase superfamily, with ten members in yeast and more than 60 in mammalian cells. They serve as master regulators of membrane traffic, each typically controlling several different aspects of a specific stage of membrane traffic by recruiting diverse effector proteins such as cytoskeletal motors, vesicle tethering proteins and regulators of SNARE complex assembly. Rabs, in turn, are regulated by specific guanine nucleotide exchange factors (GEFs) that catalyze the displacement of GDP and binding of GTP as well as GTPase activating proteins (GAPs) that stimulate the slow intrinsic rate of GTP hydrolysis. We have proposed that adjacent Rabs on a pathway are networked to one another through their regulators; specifically we have shown that the Rab, Ypt32, in its GTP-bound form recruits Sec2, the GEF that activates the downstream Rab, Sec4, as well as Gyp1, the GAP that inactivates the upstream Rab, Ypt1. The net effect of these counter-current cascades is a programmed series of Rab transitions that lead to critical changes in the functional identity of the membrane as it flows along the exocytic pathway. Phosphoinositide also play key roles in the temporal and spatial regulation of membrane traffic. The Golgi pool of phosphatidylinositol 4-phosphate (PI(4)P) works in concert with Ypt32 to initially recruit Sec2, yet a subsequent drop in PI(4)P levels directs a regulatory switch in Sec2 function in which it binds to the Sec4 effector Sec15 in a positive feedback loop. PI (4) P distribution together with Sec2 phosphorylation determine when each regulatory circuit is used. We propose three aims: 1. we will define the role of two protein kinases in the regulation of Sec2 and other components of the secretory machinery. 2. We will test the effects of rewiring the rab regulatory circuits to evaluate several models concerning the role of rabs in the control of membrane traffic. 3. We will determine the molecular mechanisms underlying several stages of secretory vesicle maturation.

Public Health Relevance

Membrane traffic is required for a broad range of essential cellular functions and the regulation of membrane traffic by Rab GTPases is therefore relevant to major human diseases, including cancer, diabetes and neural degeneration. Additional diseases have been directly attributed to specific defects in Rab expression, Rab modification, Rab regulation and Rab effectors and a number of clinically important human pathogens have evolved to exploit and disrupt our Rab regulatory pathways to promote their own intracellular agenda and to evade host defenses. We will analyze how Rab proteins are functionally linked to one another through regulatory networks to control membrane traffic.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM082861-09
Application #
9094212
Study Section
Membrane Biology and Protein Processing Study Section (MBPP)
Program Officer
Ainsztein, Alexandra M
Project Start
2008-07-01
Project End
2017-08-31
Budget Start
2016-09-15
Budget End
2017-08-31
Support Year
9
Fiscal Year
2016
Total Cost
$345,030
Indirect Cost
$122,430
Name
University of California San Diego
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Chen, Shuliang; Cui, Yixian; Parashar, Smriti et al. (2018) ER-phagy requires Lnp1, a protein that stabilizes rearrangements of the ER network. Proc Natl Acad Sci U S A 115:E6237-E6244
Liu, Dongmei; Li, Xia; Shen, David et al. (2018) Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane. Mol Biol Cell 29:736-750
Yuan, Hua; Davis, Saralin; Ferro-Novick, Susan et al. (2017) Rewiring a Rab regulatory network reveals a possible inhibitory role for the vesicle tether, Uso1. Proc Natl Acad Sci U S A 114:E8637-E8645
Stalder, Danièle; Novick, Peter J (2016) The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p. Mol Biol Cell 27:686-701
Novick, Peter (2016) Regulation of membrane traffic by Rab GEF and GAP cascades. Small GTPases 7:252-256
Chen, Shuliang; Desai, Tanvi; McNew, James A et al. (2015) Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc Natl Acad Sci U S A 112:418-23
Sánchez-León, Eddy; Bowman, Barry; Seidel, Constanze et al. (2015) The Rab GTPase YPT-1 associates with Golgi cisternae and Spitzenkörper microvesicles in Neurospora crassa. Mol Microbiol 95:472-90
Stalder, Danièle; Novick, Peter J (2015) Assaying the interaction of the Rab guanine nucleotide exchange protein Sec2 with the upstream Rab, a downstream effector, and a phosphoinositide. Methods Mol Biol 1298:85-98
Ling, Yading; Hayano, Scott; Novick, Peter (2014) Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature. Mol Biol Cell 25:3389-400
Novick, Peter J (2014) A pathway of a hundred genes starts with a single mutant: isolation of sec1-1. Proc Natl Acad Sci U S A 111:9019-20

Showing the most recent 10 out of 18 publications