Understanding the events involved in the emergence of human pathogens from animal commensals/pathogens is important to our ability to confront their increasingly frequent outbreak. In an intriguing experiment of nature, the persistent commensal of a broad range of animals, Bordetella bronchiseptica, gave rise independently to two closely related human pathogens, B. pertussis and B. parapertussis. Both organisms are highly contagious, cause acute disease with high pathology and display strong resistance to antibody-mediated clearance, characteristics not observed in their common progenitor. We have recently shown that B. pertussis uses Pertussis Toxin (PTx) to avoid rapid antibody-mediated clearance, allowing this organism to infect immune hosts;a defining characteristic of B. pertussis. Paradoxically, B. parapertussis causes the same disease in the same host, and contains the genes for PTx but does not express them. The historical view of the apparent convergent evolution towards the ability to infect humans is unable to explain this. Another paradox of the Bordetellae is the very existence, and remarkable success, of these two very closely related organisms in the same host populations. Evolutionary theory would predict that two such closely related organisms should compete via immune-mediated pressures within the host population. In our efforts to explain these observations we have proposed that, in addition to selection for optimal interactions with their hosts, the evolution of the Bordetella has been largely shaped by immune-mediated competition between strains that inhabit the same host population. This model fits with the observations that B. bronchiseptica infects all the animals around us but only rarely infects humans, and often those that are immunodeficient. Our preliminary data show that B. bronchiseptica is indeed sensitive to immune-cross protection and rapidly eliminated from B. pertussis-immune animals. Thus, the exclusion of B. bronchiseptica from most healthy humans is the result of the high level of B. pertussis-immunity. However, B. pertussis and B. parapertussis, both closely related to B. bronchiseptica, have coexisted within the same human populations, often at the same time. Here we offer the central hypothesis that immune-mediated competition shapes the evolution of the Bordetellae and, by extension, that B. parapertussis and B. pertussis are under strong selective pressure for the loss of cross-reactive antigens. We use our experimental infection model to directly examine cross-immunity and the effects of expression of cross-reactive antigens. We also extend our published MLST based phylogeny to examine the sequence of a number of antigenic genes across a population of closely related Bordetella isolates from humans and animals. Our phylogenetic studies have identified sequence types that infect both humans and animals. Using our 454 machine we will efficiently sequence the entire genomes of these strains to examine the effects of immune- mediated pressures at the genome level. Finally, these data will parameterize models of the within- and between-host dynamics of these reemerging human pathogens Project Narrative: This proposal uses a multidisciplinary approach to examine the evolution of a set of closely related respiratory pathogens. The independent emergence of two of the most important human respiratory pathogens from this set of subspecies provides an extraordinary experiment of nature that will allow us to examine some of the most important questions regarding the evolution of infectious diseases and the emergence of human pathogens from zoonoses.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM083113-04
Application #
8037674
Study Section
Genetic Variation and Evolution Study Section (GVE)
Program Officer
Eckstrand, Irene A
Project Start
2008-05-01
Project End
2013-02-28
Budget Start
2011-03-01
Budget End
2013-02-28
Support Year
4
Fiscal Year
2011
Total Cost
$435,824
Indirect Cost
Name
Pennsylvania State University
Department
Veterinary Sciences
Type
Schools of Earth Sciences/Natur
DUNS #
003403953
City
University Park
State
PA
Country
United States
Zip Code
16802
Dewan, Kalyan K; Skarlupka, Amanda L; Rivera, Israel et al. (2018) Development of macrolide resistance in Bordetella bronchiseptica is associated with the loss of virulence. J Antimicrob Chemother 73:2797-2805
Gestal, Monica C; Rivera, Israel; Howard, Laura K et al. (2018) Blood or Serum Exposure Induce Global Transcriptional Changes, Altered Antigenic Profile, and Increased Cytotoxicity by Classical Bordetellae. Front Microbiol 9:1969
Dewan, Kalyan K; Taylor-Mulneix, Dawn L; Hilburger, Lindsay J et al. (2017) An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. J Infect Dis 216:899-906
Ivanov, Yury V; Linz, Bodo; Register, Karen B et al. (2016) Identification and taxonomic characterization of Bordetella pseudohinzii sp. nov. isolated from laboratory-raised mice. Int J Syst Evol Microbiol 66:5452-5459
Linz, Bodo; Ivanov, Yury V; Preston, Andrew et al. (2016) Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 17:767
Bendor, Liron; Weyrich, Laura S; Linz, Bodo et al. (2015) Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection. PLoS One 10:e0140743
Ivanov, Yury V; Shariat, Nikki; Register, Karen B et al. (2015) A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease. BMC Genomics 16:863
Register, Karen B; Ivanov, Yury V; Harvill, Eric T et al. (2015) Novel, host-restricted genotypes of Bordetella bronchiseptica associated with phocine respiratory tract isolates. Microbiology 161:580-92
Park, Jihye; Zhang, Ying; Chen, Chun et al. (2015) Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology 161:2328-40
Bolotin, Shelly; Harvill, Eric T; Crowcroft, Natasha S (2015) What to do about pertussis vaccines? Linking what we know about pertussis vaccine effectiveness, immunology and disease transmission to create a better vaccine. Pathog Dis 73:ftv057

Showing the most recent 10 out of 52 publications