Through the funding opportunity described in PAR-18-591, this proposal seeks funds to purchase a Amersham Typhoon FLA Phosphoimager. The goals of the propose study are to investigate how cells sense extracellular chemical gradients and control their migration behaviors.
The Specific Aims of the parent grant focus on the mechanisms that stabilize directional sensing, link PIP3-binding myosin I to cytoskeletal reorganization and recruit PTEN to the plasma membrane.

Public Health Relevance

Chemotaxis has been linked to many human diseases such as cancer, asthma, arthritis and atherosclerosis. The proposed research projects will deepen our understanding of the molecular mechanism of chemotaxis and the pathogenesis of the chemotaxis-related diseases using genetics, biochemistry and cell biology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM084015-09S1
Application #
9898604
Study Section
Program Officer
Xu, Jianhua
Project Start
2009-09-30
Project End
2020-03-31
Budget Start
2018-04-01
Budget End
2020-03-31
Support Year
9
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Kriebel, Paul W; Majumdar, Ritankar; Jenkins, Lisa M et al. (2018) Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J Cell Biol 217:2891-2910
Yamada, Tatsuya; Murata, Daisuke; Adachi, Yoshihiro et al. (2018) Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. Cell Metab 28:588-604.e5
Igarashi, Atsushi; Itoh, Kie; Yamada, Tatsuya et al. (2018) Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility. J Biol Chem 293:9292-9300
Adachi, Yoshihiro; Iijima, Miho; Sesaki, Hiromi (2018) An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases 9:472-479
Yamada, Tatsuya; Adachi, Yoshihiro; Yanagawa, Toru et al. (2018) p62/sequestosome-1 knockout delays neurodegeneration induced by Drp1 loss. Neurochem Int 117:77-81
Kameoka, Shoichiro; Adachi, Yoshihiro; Okamoto, Koji et al. (2018) Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 28:67-76
Itoh, Kie; Adachi, Yoshihiro; Yamada, Tatsuya et al. (2018) A brain-enriched Drp1 isoform associates with lysosomes, late endosomes, and the plasma membrane. J Biol Chem 293:11809-11822
Tellios, Nikoleta; Belrose, Jillian C; Tokarewicz, Alexander C et al. (2017) TGF-? induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep 7:812
Yang, Jr-M; Schiapparelli, P; Nguyen, H-N et al. (2017) Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene 36:3673-3685
Adachi, Yoshihiro; Itoh, Kie; Iijima, Miho et al. (2017) Assay to Measure Interactions between Purified Drp1 and Synthetic Liposomes. Bio Protoc 7:

Showing the most recent 10 out of 41 publications