The Notch pathway is a conserved signaling system used extensively throughout embryonic development that continues to function in the maintenance of tissues and stem cells in adults. Given the large repertoire of cellular processes dependent on Notch, it is not surprising that both gains and losses in signaling have been linked to developmental syndromes, stroke, Alzheimers disease and cancer. The identification of Notch as a potential therapeutic target, along with its importance in manipulating embryonic and adult stem cells, underscore the need to clearly understand the mechanisms regulating this key signaling system. Ligands that bind and activate Notch are integral membrane proteins and signaling is dependent on direct cell-to-cell contact. Notch signaling induced by ligand involves a series of proteolytic cleavage events to release the Notch intracellular domain that functions as a transcription factor, thereby allowing the Notch receptor to function directly in signal transduction. Notch ligands and activating proteases have been identified, however, it is still unclear how interactions between Notch ligand and receptor cells activate signaling. Although it is clear that endocytosis by the ligand cell is critical for activation of signaling in the Notch cell, the mechanisms whereby endocytosis triggers signaling have remained elusive. The experiments proposed here will address a major obstacle to obtaining a clear understanding of Notch signaling mechanisms, since they will discriminate as to whether ligand endocytosis is required for ligand recycling prior to interactions with Notch, or whether in fact ligand endocytosis is required following binding to Notch to effect proteolytic activation for downstream signaling. This application outlines a research plan that combines molecular, biochemical and cellular approaches using mammalian cell culture to obtain a comprehensive understanding of the molecular machinery and endocytic mechanism used by ligand cells to activate signaling. Our preliminary studies indicate that ligand cells use an epsin-dependent mode of clathrin-mediated endocytosis to promote proteolytic activation of Notch. We now propose to obtain a complete molecular description of the clathrin-coated endocytic structure to gain mechanistic insight into how ligand endocytosis functions in Notch activation. Epsin has been implicated in recycling to produce an active ligand prior to interaction with Notch. We will directly test this hypothesis by determining first whether epsin is required for ligands to recycle and second, whether ligand recycling is required for signaling activity. Given that epsins recruit ubiquitinated endocytic cargo to clathrin- coated pits and Notch ligands must be ubiquitinated to activate signaling, we will determine if ligand ubiquitination is critical for interactions with epsin and the formation of a functionally distinct clathrin-coated endocytic structure, and whether interactions between ligand and Notch cells stimulate ligand ubiquitination. Our hypothesis that Notch is activated via a molecularly distinct form of clathrin-mediated ligand endocytosis represents a fundamentally new model for endocytic activation of a signaling receptor.

Public Health Relevance

The Notch pathway is one of a few signaling systems that is used over and over again throughout embryonic development that continues to function in the adult. Links to inherited developmental syndromes, cancer, stroke and Alzheimer disease underscore the need to define the molecular basis of Notch signaling. In this regard, successful therapeutic targeting of Notch signaling requires a comprehensive understanding of the mechanisms regulating this pathway. Knowledge of Notch signaling mechanisms will also contribute to the manipulation of embryonic and adult stem cells for clinical and commercial applications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Ainsztein, Alexandra M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Shergill, Bhupinder; Meloty-Kapella, Laurence; Musse, Abdiwahab A et al. (2012) Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. Dev Cell 22:1313-20
Meloty-Kapella, Laurence; Shergill, Bhupinder; Kuon, Jane et al. (2012) Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell 22:1299-312
Musse, Abdiwahab A; Meloty-Kapella, Laurence; Weinmaster, Gerry (2012) Notch ligand endocytosis: mechanistic basis of signaling activity. Semin Cell Dev Biol 23:429-36
Weinmaster, Gerry; Fischer, Janice A (2011) Notch ligand ubiquitylation: what is it good for? Dev Cell 21:134-44
D'Souza, Brendan; Meloty-Kapella, Laurence; Weinmaster, Gerry (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73-129