The cytokine Interferon (IFN) (/( mediates its antiviral, antiproliferative, and immunomodulatory effects through the engagement of the Jak/Stat signaling pathway. Ligation of the IFN(/( receptor results in activation of Jak tyrosine kinases and subsequent tyrosine phosphorylation of Stat1. Phosphorylated Stat1 either forms homodimers or heterodimerizes with Stat2 via reciprocal SH2 domain interactions. Dimerized Stats then translocate to the nucleus where they bind to regulatory elements in IFN response genes. In addition to tyrosine kinases, protein arginine methyltransferases (PRMT) have been implicated in IFN(/( signaling pathways through their physical association with members of the Jak/Stat pathway and through genetic studies. The Hepatitis C Virus interferes with IFN signaling by targeting arginine methylation of Stat1. We have now found that cells deficient in the Carm1 arginine methyltransferase exhibited elevated responses to IFN(-driven Stat1 activation, including a deficiency in Stat1 dephosphorylation and. Furthermore, Carm1 can methylate Stat1 in in vitro assays. Our HYPOTHESIS is that Carm1 negatively regulates Stat1 driven transcription by promoting the dephosphorylation of Stat1 by TCPTP.
Specific Aims : 1) Define the intersection of Carm1 within IFN1/2 signaling pathways. We will examine Stat1 DNA binding, tetramerization, and association with target genes. We will also characterize the activity of Jak1, Tyk2, Stat1, Stat2, Stat3, and Stat5. 2) Determine the mechanism by which Carm1 regulates Stat1 dephosphorylation, including examining the importance of Carm1 catalytic activity and the effects on Carm1 on Stat1 interaction with Pias1 and TCPTP. The Stat1 methylation site will be determined. 3) Investigate the regulation of Carm1 by the IFN(/( signaling pathway, including expression, enzymatic activity, subcellular localization, and posttranslational modifications. Significance. These studies will provide insight into the mechanisms by which PRMTs regulate Type I IFN signaling, which may be altered during viral infection.

Public Health Relevance

The interferon family of cytokines control pathogen infections through regulation of cellular proliferation and antiviral defenses, as well as through direct modulation of the immune response. For these reasons, the interferons are used clinically to treat viral and malignant diseases. Our project will address the molecular mechanisms of by which interferon signals are attenuated.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM085117-03
Application #
7882665
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Jones, Warren
Project Start
2008-09-15
Project End
2012-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
3
Fiscal Year
2010
Total Cost
$375,210
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Fernandez-Castaneda, Anthony; Arandjelovic, Sanja; Stiles, Travis L et al. (2013) Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem 288:4538-48
Dillon, Myles B C; Rust, Heather L; Thompson, Paul R et al. (2013) Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 288:27872-80
Rohrbach, Amanda S; Slade, Daniel J; Thompson, Paul R et al. (2012) Activation of PAD4 in NET formation. Front Immunol 3:360
Dillon, Myles B C; Bachovchin, Daniel A; Brown, Steven J et al. (2012) Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem Biol 7:1198-204
Rohrbach, Amanda S; Hemmers, Saskia; Arandjelovic, Sanja et al. (2012) PAD4 is not essential for disease in the K/BxN murine autoantibody-mediated model of arthritis. Arthritis Res Ther 14:R104
Arandjelovic, Sanja; McKenney, Katherine R; Leming, Sunamita S et al. (2012) ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. J Immunol 189:4112-22
Fathman, John W; Gurish, Michael F; Hemmers, Saskia et al. (2010) NIP45 controls the magnitude of the type 2 T helper cell response. Proc Natl Acad Sci U S A 107:3663-8
Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M et al. (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790-5
Bonham, Kevin; Hemmers, Saskia; Lim, Yeon-Hee et al. (2010) Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production. FEBS J 277:2096-108
Arandjelovic, Sanja; Wickramarachchi, Dilki; Hemmers, Saskia et al. (2010) Mast cell function is not altered by Coronin-1A deficiency. J Leukoc Biol 88:737-45