Our long-term goal is to understand how interactions between elements in noncoding regions of vertebrate mRNAs and their cognate binding proteins integrate signals from disparate stimuli to control translation. Tran- script-selective translationl control is mediated by interactions of RNA-binding proteins to sequence/structural elements in the 5'- or 3'-untranslated region (UTR) of target transcripts. Recently, an additional layer of com plexity has been recognized in which element pairs act as condition-dependent RNA switches. For example, riboswitches are proximate structural elements in the UTR of multiple bacterial mRNAs that undergo conforma- tional changes in response to specific metabolites. We have reported an analogous, stimulus-dependent switch in the 3'UTR of human vascular endothelial growth factor (VEGF)-A mRNA. VEGF-A mRNA contains adjoining elements that function as a novel stimulus-dependent, protein-directed RNA switch that exists in two metastable conformations: a translation-silencing and a translation-permissive conformer. The binary switch is controlled by integration of two signals, interferon (IFN)-? and hypoxia, that regulate the amount or activity of the binding factors. Upon cell stimulation by IFN-?, phosphorylation of Glu-Pro tRNA synthetase (EPRS) initiates formation of the GAIT (IFN-Gamma-Activated Inhibitor of Translation) complex. EPRS binds a defined, GAIT element in the VEGF-A mRNA 3'UTR, stabilizing the translation-silencing conformer and inhibiting translation. However, superimposition of hypoxia on IFN-? stimulation induces phosphorylation of hnRNP L at Tyr359 that initiates assembly of a newly discovered 3-component HILDA complex that binds a CA-rich element directly upstream of the GAIT element, stabilizing the translation-permissive conformer and allowing VEGF-A expression. We propose the following specific hypothesis: Myeloid cells integrate signals from IFN-? and hypoxia by inducing Tyr359 phosphorylation of hnRNP L and assembly of the HILDA complex, which in turn directs an RNA switch in the 3'-UTR of VEGF-A and other inflammation-related mRNAs to regulate translation. We will test this hypothesis by pursuing the following Specific Aims:
Aim 1 : Investigate molecular mechanisms regulating hnRNP L expression and localization;
Aim 2 : Determine the functions of HILDA components in regulating the RNA switch;
Aim 3 : Identify novel transcripts controlled by protein-directed RNA switches. We suggest that the switch evolved to maintain VEGF-A expression and angiogenesis in hypoxic, inflammatory tissues. Tumors, also residing in hypoxic, inflammatory sites, may take advantage of the VEGF-A switch to stimulate inward blood vessel growth to provide nourishment and permit tumor growth. Thus, the VEGF-A switch represents a novel therapeutic target to specifically inhibit tumor macrophage expression of VEGF-A. We also speculate that the VEGF-A switch may represent the founding member of a family of protein-directed RNA switches in vertebrates that integrate physiological or pathological stimuli to control gene expression.

Public Health Relevance

Certain messenger RNAs respond to changes in their environment by altering their folding structure and their rate of expression of protein products. Although these riboswitches are found primarily in bacteria, we have found a similar switch in the mRNA encoding human vascular endothelial growth factor (VEGF), a protein critical for blood vessel formation. The VEGF riboswitch is sensitive to inflammation and hypoxia, two conditions found in the tumor environment, and an understanding of its molecular mechanism may reveal insights into tumor growth and potential therapies to inhibit the process.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Molecular Genetics A Study Section (MGA)
Program Officer
Bender, Michael T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
Other Basic Sciences
Schools of Medicine
United States
Zip Code
Arif, Abul; Yao, Peng; Terenzi, Fulvia et al. (2018) The GAIT translational control system. Wiley Interdiscip Rev RNA 9:
Halawani, Dalia; Gogonea, Valentin; DiDonato, Joseph A et al. (2018) Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains. J Biol Chem 293:8843-8860
Arif, Abul; Terenzi, Fulvia; Potdar, Alka A et al. (2017) EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature 542:357-361
Eswarappa, Sandeepa M; Fox, Paul L (2015) Antiangiogenic VEGF-Ax: A New Participant in Tumor Angiogenesis. Cancer Res 75:2765-9
Yao, Peng; Eswarappa, Sandeepa M; Fox, Paul L (2015) Translational control mechanisms in angiogenesis and vascular biology. Curr Atheroscler Rep 17:506
Yao, Peng; Poruri, Kiran; Martinis, Susan A et al. (2014) Non-catalytic regulation of gene expression by aminoacyl-tRNA synthetases. Top Curr Chem 344:167-87
Jia, Jie; Arif, Abul; Terenzi, Fulvia et al. (2014) Target-selective protein S-nitrosylation by sequence motif recognition. Cell 159:623-34
Eswarappa, Sandeepa M; Potdar, Alka A; Koch, William J et al. (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157:1605-18
Yao, Peng; Fox, Paul L (2013) Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med 5:332-43
Yao, Peng; Potdar, Alka A; Ray, Partho Sarothi et al. (2013) The HILDA complex coordinates a conditional switch in the 3'-untranslated region of the VEGFA mRNA. PLoS Biol 11:e1001635

Showing the most recent 10 out of 19 publications