This application aims to achieve electronic control of DNA polymerase function on a time scale that superimposes with rates of enzyme binding and catalysis. To achieve this aim, we will monitor the interaction of individual DNA polymerases with a nanopore sensor under voltage- induced tension. We will characterize kinetic, biochemical, and structural properties of polymerase-DNA complexes captured under voltage control in a nanopore. We will optimize nanopore measurements of polymerase function at significantly higher bandwidth than is possible using conventional techniques and in a manner that permits serial analysis of thousands of individual enzymes as they process DNA. We believe the study is innovative because it will employ a recently established nanopore technique to identify and measure translocation steps during individual catalytic cycles of replication. Discrimination between polymerase-driven translocation mechanisms should be achievable. This work is relevant to human health because mutations that arise from misincorporation of nucleotides by DNA polymerases are a fundamental cause of cancer. In addition, nanopore-coupled polymerases could present a high speed, low cost technology for genome sequencing that has virtually no environmental impact.
This work focuses on mechanisms of DNA replication by DNA polymerases. It is relevant to human health because mutations that arise from misincorporation of nucleotides by DNA polymerases are a fundamental cause of cancer. In addition, nanopore-coupled polymerases could present a high speed, low cost technology for genome sequencing that has virtually no environmental impact.
Showing the most recent 10 out of 11 publications