Variable drug disposition is key determinant of drug efficacy and safety. Our long-term goal is to better understand the mechanisms responsible for the interindividual variability in drug disposition and effect, and eventually use this informationto personalize drug therapies. Although some of the variability is attributable to drug interactions and genetic variants, the cause of much of it remains unknown. During the current funding period, we have identified large developmental (fetal to pediatric to adult) changes in hepatic expression of human miRNAs. Many of these are predicted to target drug disposition genes. Some of those miRNAs have substantial interindividual variability in hepatic expression. miRNA expression in hepatocytes was also changed by rifampin, a drug known to alter drug metabolism. We have also shown that miRNAs target pathways that regulate drug metabolism and disposition and that genetic variants in miRNA target genes appear to influence drug metabolism. Following up on these findings, we have also identified additional SNPs in the seed sequences of predicted miRNA binding sites of hepatic regulatory genes that are associated with allele-specific expression. Our central hypothesis is that hepatic miRNAs regulate developmental changes and contribute to the interindividual variability in the expression of key drug metabolizing enzymes, and thereby, alter drug exposure.
Our first aim will be to determine the effect of altered miRNA expression on hepatocyte drug metabolism. Primary human hepatocytes will be transfected with miRNA mimics that show developmental changes and substantial interindividual variability in hepatic expression. Hepatocyte responses will be determined by measuring the metabolism probe substrates for specific clinically important cytochrome P450 enzymes and global mRNA expression.
Our second aim will test genetic variants in predicted miRNA binding sites of genes that are important for drug disposition. We have developed a novel high throughput bioassay to test large numbers of 3' UTR SNPs in miRNA binding sites to identify those which affect miRNA targeting and gene expression. Our last aim will determine the ability of plasma miRNAs to predict hepatic metabolism by five clinically important cytochrome P450 enzymes. This will be done using plasma samples from 2 completed prospective clinical trials. Those trials were designed to measure the pharmacokinetics of 5 probe drugs that determine the activity of CYP3A4/5, CYP2B6, CYP2C19, CYP2C9, and CYP1A2 enzymes. By completing these studies, we expect to 1) understand the functional impact of the developmental changes in hepatic miRNA expression on drug metabolism, 2) identify functional SNPs in miRNA target sites that alter drug metabolism, and 3) discover plasma miRNA patterns that predict hepatic drug metabolism. This should lead to a better understanding of the role of miRNAs in regulatory mechanisms of the developing liver. Ultimately, we expect that it will improve the prediction of variability in drug metabolism across the developmental continuum.

Public Health Relevance

We will be studying the underlying mechanisms that contribute to adverse drug reactions and poor drug efficacy. We will determine the role of small endogenous microRNAs in the regulation of liver drug metabolizing enzymes. These studies should help us better understand the interindividual variability in drug responses, and consequently improve drug therapies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T et al. (2018) Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes. Pharmacol Res Perspect 6:e00386
Burgess, Kimberly S; Ipe, Joseph; Swart, Marelize et al. (2018) Variants in the CYP2B6 3'UTR Alter In Vitro and In Vivo CYP2B6 Activity: Potential Role of MicroRNAs. Clin Pharmacol Ther 104:130-138
Ipe, Joseph; Collins, Kimberly S; Hao, Yangyang et al. (2018) PASSPORT-seq: A Novel High-Throughput Bioassay to Functionally Test Polymorphisms in Micro-RNA Target Sites. Front Genet 9:219
Cavallari, L H; Beitelshees, A L; Blake, K V et al. (2017) The IGNITE Pharmacogenetics Working Group: An Opportunity for Building Evidence with Pharmacogenetic Implementation in a Real-World Setting. Clin Transl Sci 10:143-146
Ipe, J; Swart, M; Burgess, K S et al. (2017) High-Throughput Assays to Assess the Functional Impact of Genetic Variants: A Road Towards Genomic-Driven Medicine. Clin Transl Sci 10:67-77
Hicks, J K; Sangkuhl, K; Swen, J J et al. (2017) Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther 102:37-44
Kalman, L V; AgĂșndez, Jag; Appell, M Lindqvist et al. (2016) Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting. Clin Pharmacol Ther 99:172-85
Li, Jin; Wang, Ying; Wang, Lei et al. (2016) Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network. BMC Genomics 17 Suppl 7:517
Benson, Eric A; Eadon, Michael T; Desta, Zeruesenay et al. (2016) Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol 7:111
Philips, Santosh; Zhou, Jing; Li, Zhigao et al. (2015) A translational bioinformatic approach in identifying and validating an interaction between Vitamin A and CYP19A1. BMC Genomics 16 Suppl 7:S17

Showing the most recent 10 out of 44 publications