The crowded and compartmentized environments inside cells are very different from the typical dilute conditions of in vitro and in silico biophysical studies of biomacromolecules. The long-term objectives of this project are to address the fundamental questions of how and how much macromolecular crowding and confinement affect thermodynamic and kinetic properties of biomolecules and to quantitatively reconstruct the influences of in vivo environments on these properties. The project has three integral components.
Aim 1 is to develop realistic theoretical models for crowding, which provide physical insight and yet allow for incorporation of molecular details.
Aim 2 is to carry out simulations and calculations for the interactions of proteins with atomistically detailed crowders, thereby direct quantitative comparison with in vitro experiments can be made.
Aim 3 is to validate theoretical predictions by in vitro experiments. Test problems encompass effects of crowding on the thermodynamics and kinetics of protein folding and protein binding. This project will overcome some of the major limitations of current approaches and make significant advances toward quantitatively reconstructing the influences of in vivo environments.

Public Health Relevance

The proposed research will lead to a deeper understanding of biological processes inside cells and of pathological conditions such as Parkinson's disease in particular. This understanding may form the foundation for more accurate prognoses of and better therapies against such diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM088187-01A2
Application #
7986642
Study Section
Macromolecular Structure and Function D Study Section (MSFD)
Program Officer
Wehrle, Janna P
Project Start
2010-08-01
Project End
2014-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
1
Fiscal Year
2010
Total Cost
$253,159
Indirect Cost
Name
Florida State University
Department
Physics
Type
Schools of Arts and Sciences
DUNS #
790877419
City
Tallahassee
State
FL
Country
United States
Zip Code
32306
Zhou, Huan-Xiang; Pang, Xiaodong (2018) Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 118:1691-1741
Banks, Anthony; Qin, Sanbo; Weiss, Kevin L et al. (2018) Intrinsically Disordered Protein Exhibits Both Compaction and Expansion under Macromolecular Crowding. Biophys J 114:1067-1079
Pang, Xiaodong; Zhou, Huan-Xiang (2017) Rate Constants and Mechanisms of Protein-Ligand Binding. Annu Rev Biophys 46:105-130
Qin, Sanbo; Zhou, Huan-Xiang (2017) Protein folding, binding, and droplet formation in cell-like conditions. Curr Opin Struct Biol 43:28-37
Im, Wonpil; Liang, Jie; Olson, Arthur et al. (2016) Challenges in structural approaches to cell modeling. J Mol Biol 428:2943-64
Qin, Sanbo; Zhou, Huan-Xiang (2016) Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions. J Phys Chem B 120:8164-74
Jean-Francois, Frantz L; Dai, Jian; Yu, Lu et al. (2014) Binding of MgtR, a Salmonella transmembrane regulatory peptide, to MgtC, a Mycobacterium tuberculosis virulence factor: a structural study. J Mol Biol 426:436-46
Zhou, Huan-Xiang; Bilsel, Osman (2014) SAXS/SANS probe of intermolecular interactions in concentrated protein solutions. Biophys J 106:771-3
Dai, Jian; Zhou, Huan-Xiang (2014) General rules for the arrangements and gating motions of pore-lining helices in homomeric ion channels. Nat Commun 5:4641
Qin, Sanbo; Zhou, Huan-Xiang (2014) Further Development of the FFT-based Method for Atomistic Modeling of Protein Folding and Binding under Crowding: Optimization of Accuracy and Speed. J Chem Theory Comput 10:2824-2835

Showing the most recent 10 out of 38 publications