Individuals afflicted with cystic fibrosis (CF) typically succumb to pulmonary complications of their disease, but CF involves all of the major organ systems. Survival of CF patients correlates strongly with body mass index, and mouse models indicate that body size in CF is due to a complex interaction of neuroendocrine function, adipose metabolism and intestinal function. We will continue to utilize mouse models to elucidate the pathways involved and their interactions, and here we propose a plan that will invoke bioinformatics to extract pathway information from literature and databases and sort out those that are concordant with our empiric data. From those pathways, we will develop computational models that will predict outcomes of these pathways when perturbed in specific ways. Using genetic and pharmacologic methods, we will perturb those pathways and assess how well they predict outcomes. Data from these manipulations will be entered back into the bioinformatics processing and new or revised models will be generated and tested until truly predictive models are generated. Concurrently, a whole-genome association study is being carried out and genes showing association with pulmonary disease or body mass index will be examined to determine if they can be placed on the pathway maps generated by the mouse studies. By this iterative process, we hope to identify new pathways contributing to CF pathophysiology and/or clarify the role of pathways known to influence CF severity.

Public Health Relevance

The work described in this proposal has fundamental importance to human disease. It describes a plan that takes advantage of multiple disciplines and cutting-edge technologies to better understand a complex disease, cystic fibrosis. The plan utilizes the power of mouse genetics and molecular biology, human genetics and high throughput genetic screening, bioinformatics and computational modeling to elucidate fundamental, but complex, changes in a simple mendelian disease. The results should be applicable to many other human conditions that are much less tractable due their complex origins, including obesity diabetes and other metabolic conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM088823-03
Application #
8091253
Study Section
Special Emphasis Panel (ZGM1-GDB-2 (CP))
Program Officer
Krasnewich, Donna M
Project Start
2009-08-20
Project End
2013-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
3
Fiscal Year
2011
Total Cost
$384,689
Indirect Cost
Name
Case Western Reserve University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Lai, Nicola; Kummitha, China; Hoppel, Charles (2017) Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus. PLoS One 12:e0183978
Cicek, Abdullah Ercument; Qi, Xinjian; Cakmak, Ali et al. (2014) An online system for metabolic network analysis. Database (Oxford) 2014:
Cicek, A Ercument; Roeder, Kathryn; Ozsoyoglu, Gultekin (2014) MIRA: mutual information-based reporter algorithm for metabolic networks. Bioinformatics 30:i175-84
Cheng, En; Ozsoyoglu, Z Meral (2014) Path-counting formulas for generalized kinship coefficients and condensed identity coefficients. Comput Math Methods Med 2014:898424
Kummitha, China M; Kalhan, Satish C; Saidel, Gerald M et al. (2014) Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling. Physiol Rep 2:
Qi, Xinjian; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin (2014) Matching metabolites and reactions in different metabolic networks. Methods 69:282-97
Spires, Jessica; Gladden, L Bruce; Grassi, Bruno et al. (2013) Distinguishing the effects of convective and diffusive O? delivery on VO? on-kinetics in skeletal muscle contracting at moderate intensity. Am J Physiol Regul Integr Comp Physiol 305:R512-21
Darrah, Rebecca J; Bederman, Ilya R; Mitchell, Anna L et al. (2013) Ventilatory pattern and energy expenditure are altered in cystic fibrosis mice. J Cyst Fibros 12:345-51
Cicek, A Ercument; Bederman, Ilya; Henderson, Leigh et al. (2013) ADEMA: an algorithm to determine expected metabolite level alterations using mutual information. PLoS Comput Biol 9:e1002859
Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola et al. (2013) An online model composition tool for system biology models. BMC Syst Biol 7:88

Showing the most recent 10 out of 22 publications