Bacteria build elaborate nanomachines on their cell surface to interact with their environment and cause disease. Each machine must be assembled from specific parts, in the proper order, and in precise amounts. Here we propose to study the mechanism by which a structural protein of the flagellar filament, Hag, homeostatically controls its own synthesis and governs its own assembly in Bacillus subtilis. Hag is part of a three-node negative feedback loop including FliW and the highly conserved post-transcriptional regulator of virulence gene expression, CsrA. We will determine the mechanism by which FliW antagonizes CsrA and we will determine the NMR solution structures of CsrA and FliW, separately and in complex. We will study an internal feedback loop in which the flagellin transcript helps maintain CsrA-FliW stoichiometry. We will measure the cytological parameters of filament length and elongation rate, determine how feedback regulation contributes to each parameter, and explore homeostatic regulation in another structural protein, the FlgE flagellar hook subunit. Our work will establish new paradigms for the post-transcriptional regulation of nanomachine assembly and provide new insights into the origin and evolution of virulence gene regulators. We will advance B. subtilis as a model organism for flagellar research and we use B. subtilis as a genetic platform for the expression and study of heterologous regulators from distantly related pathogenic bacteria. Finally, we have isolated drugs that antagonize CsrA when added to whole cells will characterize the anti-CsrA drugs as candidate antibacterial therapeutics.

Public Health Relevance

We will study how the flagellar structural subunit flagellin homeostatically restricts its own synthesis and assembly in Bacillus subtilis by focusing on each component of the three-node negative feedback loop CsrA- FliW-Hag.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Reddy, Michael K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University Bloomington
Schools of Arts and Sciences
United States
Zip Code
Hughes, Anna C; Subramanian, Sundharraman; Dann 3rd, Charles E et al. (2018) The C-Terminal Region of Bacillus subtilis SwrA Is Required for Activity and Adaptor-Dependent LonA Proteolysis. J Bacteriol 200:
Burrage, Andrew M; Vanderpool, Eric; Kearns, Daniel B (2018) The assembly order of flagellar rod subunits in Bacillus subtilis. J Bacteriol :
Hall, Ashley N; Subramanian, Sundharraman; Oshiro, Reid T et al. (2018) SwrD (YlzI) Promotes Swarming in Bacillus subtilis by Increasing Power to Flagellar Motors. J Bacteriol 200:
Berger, Angela K; Yi, Hong; Kearns, Daniel B et al. (2017) Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog 13:e1006768
Subramanian, Sundharraman; Gao, Xiaohui; Dann 3rd, Charles E et al. (2017) MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Bacillus subtilis. Proc Natl Acad Sci U S A 114:13537-13542
Wang, Fengbin; Burrage, Andrew M; Postel, Sandra et al. (2017) A structural model of flagellar filament switching across multiple bacterial species. Nat Commun 8:960
Nye, Taylor M; Schroeder, Jeremy W; Kearns, Daniel B et al. (2017) Complete Genome Sequence of Undomesticated Bacillus subtilis Strain NCIB 3610. Genome Announc 5:
Farley, Madeline M; Tu, Jiagang; Kearns, Daniel B et al. (2017) Ultrastructural analysis of bacteriophage ?29 during infection of Bacillus subtilis. J Struct Biol 197:163-171
Diethmaier, Christine; Chawla, Ravi; Canzoneri, Alexandra et al. (2017) Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 106:367-380
Hummels, Katherine R; Witzky, Anne; Rajkovic, Andrei et al. (2017) Carbonyl reduction by YmfI in Bacillus subtilis prevents accumulation of an inhibitory EF-P modification state. Mol Microbiol 106:236-251

Showing the most recent 10 out of 45 publications