Pathogenic infections represent a persistent threat to human health. The rapid development of resistance to drug therapies creates a continuing need for new anti-infective agents. The proposed research focuses on the development of sequence-random copolymers having a nylon-3 backbone as general, inexpensive antibacterial agents. We will synthesize and characterize a variety of these copolymers designed to mimic the activity of natural host-defense peptides (HDPs), which have been discovered in plants, animals, and humans. HDPs are remarkable for their general ability to halt growth of both Gram negative and Gram positive bacteria while leaving animal cells largely unaffected. The relative inability of bacteria to resist HDPs is usually attributed to a general mode of action involving degradation of bacterial cell membranes. Cationic HDPs are known to form globally amphipathic helices (hydrophobic side chains on one side, charged and other hydrophilic side chains on the opposite side) when they bind to anionic cell membranes. In contrast, the nylon-3 copolymers of interest contain a random sequence of cationic and hydrophobic side chains;they also vary in length. Preliminary work suggests that the random copolymers attack membranes by forming irregular amphipathic surface structures enabled by the flexibility of the nylon-3 backbone. Several of the random nylon-3 copolymers have bacteriostatic properties rivaling those of natural HDPs;they hemolytically attack red blood cells only at high concentration. This work will obtain a better fundamental understanding of how these copolymers degrade membranes in order to inform design improvements. The approach includes both chemical synthesis and detailed analysis of function by single-cell fluorescence imaging. The synthetic methodology enables control of mean copolymer length and the type and percentage of hydrophobic, cationic, and polar side chains. For each individual cell, the analytical methods enable direct correlation in real time of the development of bacterial """"""""symptoms"""""""" with the amount of antimicrobial polymer absorbed and the halting of cell growth. The initial work will focus on E. coli and B. subtilis as representative Gram negative and Gram positive species. Observable symptoms include translocation across the outer membrane (OM), lysing of the OM, translocation across the cytoplasmic membrane (CM) and lysing of the CM. The same techniques will determine the special properties of """"""""survivor cells"""""""" that are unusually resistant to attack. Time lapse observations after restoration of normal growth medium will reveal which short-term symptoms are sufficient to kill cells, i.e. to prevent subsequent recovery and growth. Detailed mechanistic data from the experiments will feed back into the effort to design cheap and effective antimicrobial polymers. The novel techniques and concepts developed in this work will find wide application in all efforts to design antimicrobial agents involving membrane-based functions. Random copolymers may find applications in the context of antifungal activity, antiplasmodial activity, and lung-surfactant activity as well.

Public Health Relevance

Bacterial infections are increasingly resistant to antibiotic therapies. This work explores random copolymers based on the nylon-3 backbone as a new class of antibacterial agents. Fundamental insights from detailed experimental work will inform the design of more effective antibacterial polymers. These can be synthesized in large quantities at low cost.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM093265-02
Application #
8301533
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Chin, Jean
Project Start
2011-08-01
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$316,879
Indirect Cost
$96,879
Name
University of Wisconsin Madison
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Agrawal, Anurag; Weisshaar, James C (2018) Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A. Biochim Biophys Acta Biomembr 1860:1470-1479
Yang, Zhilin; Weisshaar, James C (2018) HaloTag Assay Suggests Common Mechanism of E. coli Membrane Permeabilization Induced by Cationic Peptides. ACS Chem Biol 13:2161-2169
Yang, Zhilin; Choi, Heejun; Weisshaar, James C (2018) Melittin-Induced Permeabilization, Re-sealing, and Re-permeabilization of E. coli Membranes. Biophys J 114:368-379
Rank, Leslie A; Walsh, Naomi M; Lim, Fang Yun et al. (2018) Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi. mSphere 3:
Yang, Zhilin; Choi, Heejun (2018) Single-Cell, Time-Lapse Reactive Oxygen Species Detection in E. coli. Curr Protoc Cell Biol 80:e60
Rank, Leslie A; Walsh, Naomi M; Liu, Runhui et al. (2017) A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens. Antimicrob Agents Chemother 61:
Choi, Heejun; Yang, Zhilin; Weisshaar, James C (2017) Oxidative stress induced in E. coli by the human antimicrobial peptide LL-37. PLoS Pathog 13:e1006481
Choi, Heejun; Chakraborty, Saswata; Liu, Runhui et al. (2016) Single-Cell, Time-Resolved Antimicrobial Effects of a Highly Cationic, Random Nylon-3 Copolymer on Live Escherichia coli. ACS Chem Biol 11:113-20
Li, Wenting; Bouveret, Emmanuelle; Zhang, Yan et al. (2016) Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli. Mol Microbiol 99:571-85
Choi, Heejun; Rangarajan, Nambirajan; Weisshaar, James C (2016) Lights, Camera, Action! Antimicrobial Peptide Mechanisms Imaged in Space and Time. Trends Microbiol 24:111-122

Showing the most recent 10 out of 29 publications